We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The skin functions as a critical external barrier and serves a vital role in protecting against pathogens but also in thermoregulation, management of fluids and electrolytes, and protection from trauma. Small size burns cause relatively minor sequelae while larger burns can trigger a massive inflammatory response, secondary organ dysfunction, and result in death. The depth and extent of a burn will determine the severity of the response to this trauma.
Apolipoprotein E (APOE) E4 is the main genetic risk factor for Alzheimer’s disease (AD). Due to the consistent association, there is interest as to whether E4 influences the risk of other neurodegenerative diseases. Further, there is a constant search for other genetic biomarkers contributing to these phenotypes, such as microtubule-associated protein tau (MAPT) haplotypes. Here, participants from the Ontario Neurodegenerative Disease Research Initiative were genotyped to investigate whether the APOE E4 allele or MAPT H1 haplotype are associated with five neurodegenerative diseases: (1) AD and mild cognitive impairment (MCI), (2) amyotrophic lateral sclerosis, (3) frontotemporal dementia (FTD), (4) Parkinson’s disease, and (5) vascular cognitive impairment.
Methods:
Genotypes were defined for their respective APOE allele and MAPT haplotype calls for each participant, and logistic regression analyses were performed to identify the associations with the presentations of neurodegenerative diseases.
Results:
Our work confirmed the association of the E4 allele with a dose-dependent increased presentation of AD, and an association between the E4 allele alone and MCI; however, the other four diseases were not associated with E4. Further, the APOE E2 allele was associated with decreased presentation of both AD and MCI. No associations were identified between MAPT haplotype and the neurodegenerative disease cohorts; but following subtyping of the FTD cohort, the H1 haplotype was significantly associated with progressive supranuclear palsy.
Conclusion:
This is the first study to concurrently analyze the association of APOE isoforms and MAPT haplotypes with five neurodegenerative diseases using consistent enrollment criteria and broad phenotypic analysis.
The effect of animal characteristics and placement decisions on retained ownership profitability of Tennessee cattle from 2005 to 2015 was determined using a mixed model regression. Ex post simulation analysis examined retained ownership profitability by placement season under different animal characteristic and corn price scenarios. Regression results indicate that placement weight, placement season, days on feed, animal health, and animal sex affect retained ownership profitability. Simulation results indicate that winter placement of cattle in feedlots had the highest expected retained ownership profits. Results provide risk-averse producers information regarding the profitability of retained ownership.
This chapter describes various imaging modalities and safety concerns associated with a person when used during pregnancy or in the immediate postpartum period. The radiation effects to the fetus are categorized into deterministic and stochastic effects. Plain radiography and fluoroscopy, ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI) and nuclear medicine scan are the most commonly used imaging modalities during pregnancy. Following intravenous administration, very low level of iodinated or gadolinium-based contrast agents is excreted in breast milk and ingested by the infant. The advantages of the nuclear medicine scan are lower radiation dose to the maternal breast and the avoidance of intravenous iodinated contrast. Trauma is a major cause of maternal and fetal mortality, and imaging choices in this setting should be prioritized for fast and accurate diagnosis. CT evaluation is strongly recommended in patients with an acute abdomen who suffered abdominal trauma.
The objective of this study was to determine the prevalence of Staphylococcus-contaminated stethoscopes belonging to emergency department (ED) staff and to identify the proportion of these that were Staphylococcus aureus or methicillin-resistant Staphylococcus aureus (MRSA).
Methods:
We conducted a prospective observational cohort study of bacterial cultures from 100 ED staff members' stethoscopes at three EDs. Study participants were asked to complete a questionnaire.
Results:
Fifty-four specimens grew coagulase-negative staphylococci and one grew methicillin-susceptible S. aureus. No MRSA was cultured. Only 8% of participants, all of whom were nurses, reported cleaning their stethoscope before or after each patient assessment. Alcohol-based wipes were most commonly used to clean stethoscopes. A lack of time, being too busy, and forgetfulness were the most frequently reported reasons for not cleaning the stethoscope in the ED.
Conclusions:
This study indicates that although stethoscope contamination rates in these EDs are high, the prevalence of S. aureus or MRSA on stethoscopes is low.
The cognitive profile of early onset Parkinson’s disease (EOPD) has not been clearly defined. Mutations in the parkin gene are the most common genetic risk factor for EOPD and may offer information about the neuropsychological pattern of performance in both symptomatic and asymptomatic mutation carriers. EOPD probands and their first-degree relatives who did not have Parkinson’s disease (PD) were genotyped for mutations in the parkin gene and administered a comprehensive neuropsychological battery. Performance was compared between EOPD probands with (N = 43) and without (N = 52) parkin mutations. The same neuropsychological battery was administered to 217 first-degree relatives to assess neuropsychological function in individuals who carry parkin mutations but do not have PD. No significant differences in neuropsychological test performance were found between parkin carrier and noncarrier probands. Performance also did not differ between EOPD noncarriers and carrier subgroups (i.e., heterozygotes, compound heterozygotes/homozygotes). Similarly, no differences were found among unaffected family members across genotypes. Mean neuropsychological test performance was within normal range in all probands and relatives. Carriers of parkin mutations, whether or not they have PD, do not perform differently on neuropsychological measures as compared to noncarriers. The cognitive functioning of parkin carriers over time warrants further study. (JINS, 2011, 17, 1–10)
We present the results of a systematic benchmarking study, using 45nm-groundrule structures, of a commercially-available ionized PVD Cu technology which employs an in-situ Ar+ radio-frequency (Rf) plasma capability for enhanced coverage, and compare its performance and extendibility against the same seedlayer process operated in conventional low-pressure mode. Studies of single-damascene lines and dual-damascene via structures indicate that the PVD Cu seedlayer with Rf-Plasma enhancement enables a reduction of the PVD Cu seed thickness on the order of 35%, based on studies of Cu voiding, via-yield degradation, and transmission-electron microscopy (TEM). These results illustrate the critical importance of the Rf-plasma resputter capability in extending the PVD Cu process to advanced groundrules at 45nm and beyond.
Silicon germanium pMOSFETs with channel lengths down to 0.4m have been fabricated on limited area silicon germanium virtual substrates. The devices have a 5nm thick Si0.3Ge0.7 active layer grown by MBE on top of relaxed Si0.7Ge0.3 virtual substrate. Virtual substrates were grown on top of 10μm square silicon pillars defined by etching trenches around their perimeter into the original silicon substrate. This limits the area of the growth zone, which in turn promotes the relaxation of the virtual substrate. Electrical measurements on 2μm long channel devices show that the maximum mobility in the strained SiGe devices is 211cm2V-1cm-1, compared to 104cm2V-1cm-1 for silicon reference devices. This increase in hole mobility increases the current drive of 0.4m devices measured at Vgt=-2V, Vds=-2.5V from 154μA/m to 192μA/μm.
Polycrystalline-Si1−xGex films have been formed by various methods on oxide-coated Si substrates at temperatures ≤600°C. Compared to thermal growth, plasma deposition of poly-Si1−xGex promotes smoother films with smaller grains having a {200}-dominated texture. Poly-Si1−xGex Alms formed by plasma deposition of amorphous-Si1-xGex followed by a crystallization anneal have an even smoother surface with grain sizes enhanced by an order of magnitude and a weak {111} grain texture. Hydrogen incorporated in amorphous-Si1−xGex evolves completely during crystallization without disrupting the smooth surface morphology. The largest grain sizes (∶1.3μm) are achieved in poly-Si1−xGex films formed by Si+ ion implantation for amorphization with a subsequent recrystallization anneal.
Chronic ICV administration of NGF stimulates the activity of the cholinergic neuronal markers, HACU and ChAT, as well as the evoked release of both endogenous and newly synthesized acetylcholine in the brain of aging Fischer 344 male rats. However, the pattern of cholinergic phenotype stimulation indicates an age-related differential regulation of ChAT, HACU, and ACh release between specific brain areas, with the largest.effects found in the striatum. NGF treatment also increases the effectiveness of neurotransmission between basal forebrain cholinergic neurons and postsynaptic amygdaloid target neurons. The stimulation of central cholinergic transmitter function after NGF treatment affects behavior in a Y-maze brightness discrimination paradigm. NGF treatment does not affect the cognitive measure of brightness discrimination, but reduces the number of avoidance attempts, a measure of motor function.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.