We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Only a limited number of patients with major depressive disorder (MDD) respond to a first course of antidepressant medication (ADM). We investigated the feasibility of creating a baseline model to determine which of these would be among patients beginning ADM treatment in the US Veterans Health Administration (VHA).
Methods
A 2018–2020 national sample of n = 660 VHA patients receiving ADM treatment for MDD completed an extensive baseline self-report assessment near the beginning of treatment and a 3-month self-report follow-up assessment. Using baseline self-report data along with administrative and geospatial data, an ensemble machine learning method was used to develop a model for 3-month treatment response defined by the Quick Inventory of Depression Symptomatology Self-Report and a modified Sheehan Disability Scale. The model was developed in a 70% training sample and tested in the remaining 30% test sample.
Results
In total, 35.7% of patients responded to treatment. The prediction model had an area under the ROC curve (s.e.) of 0.66 (0.04) in the test sample. A strong gradient in probability (s.e.) of treatment response was found across three subsamples of the test sample using training sample thresholds for high [45.6% (5.5)], intermediate [34.5% (7.6)], and low [11.1% (4.9)] probabilities of response. Baseline symptom severity, comorbidity, treatment characteristics (expectations, history, and aspects of current treatment), and protective/resilience factors were the most important predictors.
Conclusions
Although these results are promising, parallel models to predict response to alternative treatments based on data collected before initiating treatment would be needed for such models to help guide treatment selection.
Fewer than half of patients with major depressive disorder (MDD) respond to psychotherapy. Pre-emptively informing patients of their likelihood of responding could be useful as part of a patient-centered treatment decision-support plan.
Methods
This prospective observational study examined a national sample of 807 patients beginning psychotherapy for MDD at the Veterans Health Administration. Patients completed a self-report survey at baseline and 3-months follow-up (data collected 2018–2020). We developed a machine learning (ML) model to predict psychotherapy response at 3 months using baseline survey, administrative, and geospatial variables in a 70% training sample. Model performance was then evaluated in the 30% test sample.
Results
32.0% of patients responded to treatment after 3 months. The best ML model had an AUC (SE) of 0.652 (0.038) in the test sample. Among the one-third of patients ranked by the model as most likely to respond, 50.0% in the test sample responded to psychotherapy. In comparison, among the remaining two-thirds of patients, <25% responded to psychotherapy. The model selected 43 predictors, of which nearly all were self-report variables.
Conclusions
Patients with MDD could pre-emptively be informed of their likelihood of responding to psychotherapy using a prediction tool based on self-report data. This tool could meaningfully help patients and providers in shared decision-making, although parallel information about the likelihood of responding to alternative treatments would be needed to inform decision-making across multiple treatments.
The hypotheses in both target articles rely implicitly on much the same logic. For a “social-bonding” device to make sense, there must be an underlying reason why an otherwise-arbitrary behaviour sustains alliances – namely, credible signals of one's value to partners. To illustrate our points, we draw on the parallels with supposed bonding behaviours in nonhuman animals.
Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools.
Aims
To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics.
Method
Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts.
Results
Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO.
Conclusions
AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
Scanning transmission electron microscopy (STEM) allows for imaging, diffraction, and spectroscopy of materials on length scales ranging from microns to atoms. By using a high-speed, direct electron detector, it is now possible to record a full two-dimensional (2D) image of the diffracted electron beam at each probe position, typically a 2D grid of probe positions. These 4D-STEM datasets are rich in information, including signatures of the local structure, orientation, deformation, electromagnetic fields, and other sample-dependent properties. However, extracting this information requires complex analysis pipelines that include data wrangling, calibration, analysis, and visualization, all while maintaining robustness against imaging distortions and artifacts. In this paper, we present py4DSTEM, an analysis toolkit for measuring material properties from 4D-STEM datasets, written in the Python language and released with an open-source license. We describe the algorithmic steps for dataset calibration and various 4D-STEM property measurements in detail and present results from several experimental datasets. We also implement a simple and universal file format appropriate for electron microscopy data in py4DSTEM, which uses the open-source HDF5 standard. We hope this tool will benefit the research community and help improve the standards for data and computational methods in electron microscopy, and we invite the community to contribute to this ongoing project.
A national need is to prepare for and respond to accidental or intentional disasters categorized as chemical, biological, radiological, nuclear, or explosive (CBRNE). These incidents require specific subject-matter expertise, yet have commonalities. We identify 7 core elements comprising CBRNE science that require integration for effective preparedness planning and public health and medical response and recovery. These core elements are (1) basic and clinical sciences, (2) modeling and systems management, (3) planning, (4) response and incident management, (5) recovery and resilience, (6) lessons learned, and (7) continuous improvement. A key feature is the ability of relevant subject matter experts to integrate information into response operations. We propose the CBRNE medical operations science support expert as a professional who (1) understands that CBRNE incidents require an integrated systems approach, (2) understands the key functions and contributions of CBRNE science practitioners, (3) helps direct strategic and tactical CBRNE planning and responses through first-hand experience, and (4) provides advice to senior decision-makers managing response activities. Recognition of both CBRNE science as a distinct competency and the establishment of the CBRNE medical operations science support expert informs the public of the enormous progress made, broadcasts opportunities for new talent, and enhances the sophistication and analytic expertise of senior managers planning for and responding to CBRNE incidents.
Delays in triage processes in the emergency department (ED) can compromise patient safety. The aim of this study was to provide proof-of-concept that a self-check-in kiosk could decrease the time needed to identify ambulatory patients arriving in the ED. We compared the use of a novel automated self-check-in kiosk to identify patients on ED arrival to routine nurse-initiated patient identification.
Methods
We performed a prospective trail with random weekly allocation to intervention or control processes during a 10-week study period. During intervention weeks, patients used a self-check-in kiosk to self-identify on arrival. This electronically alerted triage nurses to patient arrival times and primary complaint before triage. During control weeks, kiosks were unavailable and patients were identified using routine nurse-initiated triage. The primary outcome was time-to-first-identification, defined as the interval between ED arrival and identification in the hospital system.
Results
Median (interquartile range) time-to-first-identification was 1.4 minutes (1.0–2.08) for intervention patients and 9 minutes (5–18) for control patients. Regression analysis revealed that the adjusted time-to-first-identification was 13.6 minutes (95% confidence interval 12.8–14.5) faster for the intervention group.
Conclusion
A self-check-in kiosk significantly reduced the time-to-first-identification for ambulatory patients arriving in the ED.
The aims of this study were to identify locations of births in Arizona with critical CHD, as well as to assess the current use of pulse-oximetry screening and capacities of birth centres to manage a positive screen.
Study design
Infants (n=487) with a potentially critical CHD were identified from the Arizona Department of Health Services from 2012 and 2013; charts were retrospectively reviewed. Diagnosis was confirmed using echocardiographies. ArcGIS was used to generate maps to visualise the location of treating facility and mother’s residence. Birth centres were surveyed to assess screening practices and capacities to manage critical CHD in 2015.
Results
Of the 272 patients identified with critical CHD, 52% had been diagnosed prenatally. Patients travelled an average distance of 55.1 miles to their treating facility. Mortality was not related to prenatal diagnosis (p=0.30), living at a high elevation (p=0.82), or to distance travelled to the treating facility (p=0.68). Of 50 birth centres, 33 responded to the survey and all centres practiced critical CHD screening. A total of 25 centres could perform paediatric echocardiographies; 64% of these centres could digitally transmit echocardiograms. In all, 24 birth centres maintained access to prostaglandins.
Conclusions
Pulse-oximetry screening in newborns is currently implemented in the majority of Arizona hospitals. Although most centres could perform initial management steps following a positive screen, access to paediatric cardiology services was limited. Patients with critical CHD sometimes travelled a great distance to treating facilities. Digital transmission of echocardiograms or tele-echocardiography would reduce the distance travelled for the management of a positive screen, decrease the financial burden of transportation, and expedite care for critically ill neonates.
Ice algae are a key component in polar marine food webs and have an active role in large-scale biogeochemical cycles. They remain extremely under-sampled due to the coarse nature of traditional point sampling methods compounded by the general logistical limitations of surveying in polar regions. This study provides a first assessment of hyperspectral imaging as an under-ice remote-sensing method to capture sea-ice algae biomass spatial variability at the ice/water interface. Ice-algal cultures were inoculated in a unique inverted sea-ice simulation tank at increasing concentrations over designated cylinder enclosures and sparsely across the ice/water interface. Hyperspectral images of the sea ice were acquired with a pushbroom sensor attaining 0.9 mm square pixel spatial resolution for three different spectral resolutions (1.7, 3.4, 6.7 nm). Image analysis revealed biomass distribution matching the inoculated chlorophyll a concentrations within each cylinder. While spectral resolutions >6 nm hindered biomass differentiation, 1.7 and 3.4 nm were able to resolve spatial variation in ice algal biomass implying a coherent sensor selection. The inverted ice tank provided a suitable sea-ice analogue platform for testing key parameters of the methodology. The results highlight the potential of hyperspectral imaging to capture sea-ice algal biomass variability at unprecedented scales in a non-invasive way.
This book presents a wide range of new research on many aspects of naval strategy in the early modern and modern periods. Among the themes covered are the problems of naval manpower, the nature of naval leadership and naval officers, intelligence, naval training and education, and strategic thinking and planning. The book is notable for giving extensive consideration to navies other than those ofBritain, its empire and the United States. It explores a number of fascinating subjects including how financial difficulties frustrated the attempts by Louis XIV's ministers to build a strong navy; how the absence of centralised power in the Dutch Republic had important consequences for Dutch naval power; how Hitler's relationship with his admirals severely affected German naval strategy during the Second World War; and many more besides. The book is a Festschrift in honour of John B. Hattendorf, for more than thirty years Ernest J. King Professor of Maritime History at the US Naval War College and an influential figure in naval affairs worldwide.
N.A.M. Rodger is Senior Research Fellow at All Souls College, Oxford.
J. Ross Dancy is Assistant Professor of Military History at Sam Houston State University.
Benjamin Darnell is a D.Phil. candidate at New College, Oxford.
Evan Wilson is Caird Senior Research Fellow at the National Maritime Museum, Greenwich.
Contributors: Tim Benbow, Peter John Brobst, Jaap R. Bruijn, Olivier Chaline, J. Ross Dancy, Benjamin Darnell, James Goldrick, Agustín Guimerá, Paul Kennedy, Keizo Kitagawa, Roger Knight, Andrew D. Lambert, George C. Peden, Carla Rahn Phillips, Werner Rahn, Paul M. Ramsey, Duncan Redford, N.A.M. Rodger, Jakob Seerup, Matthew S. Seligmann, Geoffrey Till, Evan Wilson