We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Physical representation of coherent motions in wall-bounded turbulence satisfying Townsend's attached-eddy hypothesis (AEH) is still an open question to be debated. Here, we apply proper orthogonal decomposition (POD) to instantaneous snapshots of $u$ component velocity fields in the streamwise–wall-normal plane of three turbulent boundary layers, which cover a frictional Reynolds number ($Re$) of $Re_\tau \approx 1000{\sim} 4000$ and were either measured by large-field-of-view planar particle image velocimetry or calculated by direct numerical simulation. The $u$ component POD modes characterized by streamwise recurring large-scale motions are decomposed into wall-attached and wall-detached parts depending on the wall-attachment condition. The former, i.e. wall-attached POD eddies, are believed to be the prime statistical representations of attached eddies. The reason lies in three aspects. Firstly, wall-attached POD eddies are geometrically self-similar and statistically independent. Secondly, the wall-normal variation of the variance of reduced-order streamwise velocity components $\tilde {u}_{AE}$, which is only contributed by wall-attached POD eddies, presents logarithmic decay in the inertial flow region. Thirdly, analysis on the scaling behaviour of the high-even-order moment, moment generating function, as well as longitudinal two-point structure function, all indicate a quasi-Gaussian behaviour of $\tilde {u}_{AE}$. None of these AEH-predicted behaviours are evident when the contribution of superstructure-like POD eddies are considered. Furthermore, wall-detached POD eddies are found to also present quasi-Gaussian behaviour. They might be treated as passive fragments of wall-attached ones.
A drag correlation is established for laminar particle-laden flows, based on data from the interfaced-resolved direct numerical simulations (IR-DNS) of particle sedimentation in a periodic domain at density ratio ranging from 2 to 1000, particle concentration ranging from 0.59 % to 14.16 %, and particle Reynolds number below 132. Our drag decreases slightly with increasing density ratio when the other parameters are fixed. The drag correlation is then corrected to account for the turbulence effect by introducing the relative turbulent kinetic energy, from the IR-DNS data of the upward turbulent channel flows laden with the particles larger than the Kolmogorov length scale at relatively low particle volume fractions. A drift velocity model is developed to obtain the effective slip velocity from the interphase mean velocity difference for the vertical turbulent channel flow by considering the effects of particle inertia, particle concentration distribution and large-scale streamwise vortices.
Se is an indispensable trace element for the human body, and telomere length is considered a marker of biological ageing. Previous studies have shown that dietary Se intake is associated with telomere length. However, the relationship between Se intake and telomere length in patients with diabetes has not been well studied. Therefore, this study aimed to investigate the relationship between dietary Se intake and telomere length in patients with diabetes. We extracted 878 participants with diabetes from the National Health and Nutrition Examination Survey database for 1990–2002. Dietary Se intake was assessed using the 24 h dietary recall method, and telomere length was measured using quantitative PCR. Generalised linear models were constructed to assess the relationship between dietary Se intake and telomere length. After controlling for the confounders, 1 μg increase in dietary Se intake in female patients with diabetes, and telomere length increased by 1·84 base pairs (β = 1·84 (95 % CI: 0·15, 3·53)), there was a line relationship between dietary Se intake and telomere length in female patients with diabetes and telomere length increased with increasing dietary Se intake within the range of 0–250 μg. The study demonstrates that dietary Se intake is significantly associated with telomere length only in the female population with diabetes in the USA. However, further prospective studies are required to confirm this finding.
A meta-analysis has explored the effect of psychotherapy on the quality of life (QOL) but has not explored the effect on advanced cancer patients’ survival, which is highly debated. Therefore, we consider the survival days and QOL as the primary outcomes in our analysis.
Methods
Eligible studies were collected from four databases (PubMed, Embase, Cochrane Library, and Web of Science) until February 20, 2021. The pooled effect sizes were presented as weighted mean difference (WMD) or relative risk (RR) with 95% confidence intervals (CIs). Publication bias was evaluated by Egger's test, and I2 statistics was used to assess the heterogeneity.
Results
Thirty-three studies were finally included, containing 2,159 patients in the psychotherapy group and 2,170 patients in the control group. McGill Quality of Life Questionnaire (MQOL) and European Organization for Research and Treatment of Cancer Quality of Life-C15-Palliative (EORTC-QLQ-C15-Pal) supported that QOL of the psychotherapy group was significantly higher than that of the control group, and WMD value was 0.42 (95% CI: 0.12–0.71) and 17.26 (95% CI: 11.08–23.44), respectively. No significant difference was observed between the two groups regarding to the survival time (WMD: 17.85, 95% CI: −8.79, 44.49, P = 0.189). Moreover, the levels of anxiety, depression, confusion, pain, and suffering were lowered in psychotherapy group (all P < 0.05).
Significance of results
Psychotherapy could improve the QOL of advanced cancer patients but not affect the survival time.
Over the last 25 years, radiowave detection of neutrino-generated signals, using cold polar ice as the neutrino target, has emerged as perhaps the most promising technique for detection of extragalactic ultra-high energy neutrinos (corresponding to neutrino energies in excess of 0.01 Joules, or 1017 electron volts). During the summer of 2021 and in tandem with the initial deployment of the Radio Neutrino Observatory in Greenland (RNO-G), we conducted radioglaciological measurements at Summit Station, Greenland to refine our understanding of the ice target. We report the result of one such measurement, the radio-frequency electric field attenuation length $L_\alpha$. We find an approximately linear dependence of $L_\alpha$ on frequency with the best fit of the average field attenuation for the upper 1500 m of ice: $\langle L_\alpha \rangle = ( ( 1154 \pm 121) - ( 0.81 \pm 0.14) \, ( \nu /{\rm MHz}) ) \,{\rm m}$ for frequencies ν ∈ [145 − 350] MHz.
Traumatic brain injury (TBI) was first proposed as a potential risk factor for developing a glioma in the 1800s, and conditions for establishing a causal relationship between brain injury and gliomas have since been proposed. Given the medical and legal ramifications, the current literature was reviewed to better understand this possible association. Articles that examined the relationship between TBI and glioma formation in adults and were published in English between 1978 and 2022 were reviewed. There were 19 case reports of 25 patients and 16 observational studies. The case reports describe glioma formation at the precise site of prior brain injury in continuity with traumatic scar; the observational studies report conflicting findings, but they largely demonstrate no association. Most of the observational studies are limited by their retrospective nature, but we identified one prospective cohort study which found a positive association. Altogether, we suggest that glioma formation after TBI is a rare occurrence that warrants further study.
This study investigated an outbreak in a kindergarten in Wuyi County of acute gastroenteritis concerning a large number of students and teachers. We performed a case-control study, and collected information on the layout of the school, symptoms, onset time of all cases and vomiting sites. A total of 62 individuals fit the definition of probable cases; among these, there were 19 cases of laboratory-confirmed norovirus infection. Nausea and vomiting were the most common symptoms in the outbreak. Seven student norovirus patients vomited in the school. The odds ratio (OR) of norovirus illness was 15.75 times higher among teachers who handled or interacted with student vomitus without respiratory protection than compared to those without this type of exposure (OR 15.75, 95% CI 1.75–141.40). Nine samples were successfully genotyped; eight samples were norovirus GII.2[P16], one sample was norovirus GII.4 Sydney[P16]. This study revealed that improper handling of vomitus is a risk factor of norovirus infection. Therefore, more attention should be given to train school staff in knowledge of disinfection.
The modulations of high/low-speed large-scale motions (H/L-SMs) on the turbulent/non-turbulent interface (TNTI) and turbulent entrainment are investigated in turbulent boundary layers via both experimental and numerical studies. The spanwise locations of large-scale motions can be locked by the spanwise heterogeneity, so the boundary layers over such a configuration are investigated first as an instructive case. In the engulfment process, it is found that irrotational ‘bubbles’ near the TNTI are more likely to originate from engulfment, while bubbles far from the TNTI could be produced by the local turbulence itself. Additionally, H-SMs are found to enhance the engulfment by the sweep flow. In the nibbling process, a competition relationship is observed: L-SMs induce stronger instantaneous ‘nibbling’ events by transporting more fluids towards the TNTI, while the H-SMs induced a more distorted TNTI. Consequently, the integral nibbling flux is greater above H-SMs. Furthermore, the explored mechanisms are verified to be insensitive to the wall shapes such as smooth and homogeneous roughness walls, which demonstrates that these modulations are universal for turbulent boundary layers. Finally, a conceptual modulation model is proposed to illustrate the entrainment process above the large-scale motions.
Fossil feathers have greatly improved our understanding of the evolutionary transition from non-avian dinosaurs to birds and the evolution of feathers, and may be the only evidence for their source animals in the fossil record. Hot spring environments have been demonstrated to be conducive to the preservation of fossils, but internal silicification of feathers was not observed in the only avian carcass so far discovered in ancient hot spring deposits. To determine whether feathers can be internally silicified, here we analyse feathers sampled from a modern hot spring vent pool – Champagne Pool – in New Zealand. Our results of scanning electron microscopy (SEM)-energy dispersive X-ray spectrometry elemental mapping show that the sampled feathers are silicified to different degrees, and one of them is pervasively silicified. SEM observations show that feathers can be silicified at the cellular level. Degradation is involved in the silicification of feathers, as indicated by the reduction of the abundance of carbon and the loss of keratin fibrils. Our findings suggest that ancient deposits of hot spring vent pools are promising targets in search for fossil feathers.
Patients with single ventricle CHD have significant morbidity and healthcare utilisation throughout their lifetime, including non-cardiac hospital admissions. Respiratory viral infections are the main cause of hospitalisation in children, but few data exist for single ventricle patients. We sought to identify how respiratory viral infections impact patients with single ventricle CHD and potential differences between Glenn and Fontan circulation.
Methods:
We conducted a retrospective study of patients seen from 01/01/2011–12/31/2020. We identified patients with a history of single ventricle CHD and Glenn palliation, and a normoxic control group with isolated atrial septal defect requiring surgical closure. We compared viral-related clinical presentations, admissions, and admission characteristics.
Results:
A total of 312 patients were included (182 single ventricle, 130 atrial septal defect). Single ventricle patients were more likely than children with isolated atrial septal defect to be admitted with a respiratory virus (odds ratio 4.15 [2.30–7.46]), but there was no difference in mechanical ventilation or hospital length of stay (p = 0.4709). Single ventricle patients with Glenn circulation were more likely than those with Fontan circulation to present and be admitted (odds ratio 3.25 [1.62–6.52]), but there was no difference in ICU admission, mechanical ventilation, or hospital length of stay (p = 0.1516).
Conclusions:
Respiratory viral infections are prevalent but uncomplicated in patients with single ventricle CHD. Viral-related presentations and admissions are more prevalent during the period of Glenn circulation compared to Fontan circulation; however, rate of mechanical ventilation and hospital length of stay are similar.
Energy homeostasis is essential for organisms to maintain fluctuation in energy accumulation, mobilization. Lipids as the main energy reserve in insects, their metabolism is under the control of many physiological program. This study aimed to determine whether the adipokinetic hormone receptor (AKHR) was involved in the lipid mobilization in the Spodoptera litura. A full-length cDNA encoding AKHR was isolated from S. litura. The SlAKHR protein has a conserved seven-transmembrane domain which is the character of a putative G protein receptor. Expression profile investigation revealed that SlAKHR mRNA was highly expressed in immatural stage and abundant in fat body in newly emerged female adults. Knockdown of SlAKHR expression was achieved through RNAi by injecting double-stranded RNA (dsRNA) into the 6th instar larvae. The content of triacylgycerol (TAG) in the fat body increased significantly after the SlAKHR gene was knockdown. And decrease of TAG releasing to hemolymph with increase of free fatty acid (FFA) in hemolymph were observed when the SlAKHR gene was knowned-down. In addition, lipid droplets increased in fat body was also found. These results suggested that SlAKHR is critical for insects to regulate lipids metabolism.
Nosema bombycis is a destructive and specific intracellular parasite of silkworm, which is extremely harmful to the silkworm industry. N. bombycis is considered as a quarantine pathogen of sericulture because of its long incubation period and horizontal and vertical transmission. Herein, two single-chain antibodies targeting N. bombycis hexokinase (NbHK) were cloned and expressed in fusion with the N-terminal of Slmb (a Drosophila melanogaster FBP), which contains the F-box domain. Western blotting demonstrated that Sf9-III cells expressed NSlmb–scFv-7A and NSlmb–scFv-6H, which recognized native NbHK. Subsequently, the NbHK was degraded by host ubiquitination system. When challenged with N. bombycis, the transfected Sf9-III cells exhibited better resistance relative to the controls, demonstrating that NbHK is a prospective target for parasite controls and this approach represents a potential solution for constructing N. bombycis-resistant Bombyx mori.
This study aimed to examine the impact of different dietary patterns on stroke outcomes among type 2 diabetes mellitus (T2DM) patients in China.
Design:
Participants were enrolled by a stratified random cluster sampling method in the study. After collecting dietary data using a quantified FFQ, latent class analysis was used to identify dietary patterns, and propensity score matching was used to reduce confounding effects between different dietary patterns. Binary logistic regression and conditional logistic regression were used to analyse the relationship between dietary patterns and stroke in patients with T2DM.
Setting:
A cross-sectional survey available from December 2013 to January 2014.
Participants:
A total of 13 731 Chinese residents aged 18 years or over.
Results:
Two dietary patterns were identified: 61·2 % of T2DM patients were categorised in the high-fat dietary pattern while 38·8 % of patients were characterised by the balanced dietary pattern. Compared with the high-fat dietary pattern, the balanced dietary pattern was associated with reduced stroke risk (OR = 0·63, 95 %CI 0·52, 0·76, P < 0·001) after adjusting for confounding factors. The protective effect of the balanced model did not differ significantly (interaction P > 0·05).
Conclusions:
This study provides sufficient evidence to support the dietary intervention strategies to prevent stroke effectively. Maintaining a balanced dietary pattern, especially with moderate consumption of foods rich in quality protein and fresh vegetables in T2DM patients, might decrease the risk of stroke in China.
This study aimed to describe the clinical manifestations of adenovirus infections and identify potential risk factors for co-infection with chlamydia, viruses and bacteria in hospitalised children from Hangzhou, China. From January to December 2019, the characteristics of hospitalised children infected with adenovirus at Hangzhou Children's Hospital and Zhejiang Xiaoshan Hospital were collected. The clinical factors related to co-infection with chlamydia, viruses and bacteria were assessed using multivariate logistic regression analyses. A total of 5989 children were infected with adenovirus, of which 573 were hospitalised for adenovirus infection. The severity of adenovirus respiratory infection was categorised as follows: mild (bronchiolitis, 73.6%), moderate (bronchopneumonia, 17.6%) or severe (pneumonia, 8.8%). Of the 573 children who were hospitalised, 280 presented with co-infection of chlamydia, viruses or bacteria, while the remaining 293 had only adenovirus infection. Multivariate stepwise logistic regression analyses indicated that elevated ferritin was associated with an increased risk of chlamydia co-infection (odds ratio (OR) 6.50; 95% confidence interval (CI) 1.56–27.11; P = 0.010). However, increased white blood cell (WBC) count was associated with a reduced risk of viral co-infection (OR 0.84; 95% CI 0.75–0.95; P = 0.006). The study indicated that co-infection with chlamydia could be affected by elevated ferritin levels. WBC levels could affect viral co-infection in hospitalised children infected with adenovirus.
The role of neurological proteins in the development of bipolar disorder (BD) and schizophrenia (SCZ) remains elusive now. The current study aims to explore the potential genetic correlations of plasma neurological proteins with BD and SCZ.
Methods:
By using the latest genome-wide association study (GWAS) summary data of BD and SCZ (including 41,917 BD cases, 11,260 SCZ cases, and 396,091 controls) derived from the Psychiatric GWAS Consortium website (PGC) and a recently released GWAS of neurological proteins (including 750 individuals), we performed a linkage disequilibrium score regression (LDSC) analysis to detect the potential genetic correlations between the two common psychiatric disorders and each of the 92 neurological proteins. Two-sample Mendelian randomisation (MR) analysis was then applied to assess the bidirectional causal relationship between the neurological proteins identified by LDSC, BD and SCZ.
Results:
LDSC analysis identified one neurological protein, NEP, which shows suggestive genetic correlation signals for both BD (coefficient = −0.165, p value = 0.035) and SCZ (coefficient = −0.235, p value = 0.020). However, those association did not remain significant after strict Bonferroni correction. Two sample MR analysis found that there was an association between genetically predicted level of NEP protein, BD (odd ratio [OR] = 0.87, p value = 1.61 × 10−6) and SCZ (OR = 0.90, p value = 4.04 × 10−6). However, in the opposite direction, there is no genetically predicted association between BD, SCZ, and NEP protein level.
Conclusion:
This study provided novel clues for understanding the genetic effects of neurological proteins on BD and SCZ.
The impact of flexible rectangular aluminum plates on a quiescent water surface is studied experimentally. The plates are mounted via pinned supports at the leading and trailing edges to an instrument carriage that drives the plates at constant velocity and various angles relative to horizontal into the water surface. Time-resolved measurements of the hydrodynamic normal force ($F_n$) and transverse moment ($M_{to}$), the spray root position ($\xi _r$) and the plate deflection ($\delta$) are collected during plate impacts at 25 experimental conditions for each plate. These conditions comprise a matrix of impact Froude numbers ${Fr} = V_n(gL)^{-0.5}$, plate stiffness ratios $R_D= \rho _w V_n^2 L^3D^{-1}$ and submergence time ratios $R_T= T_sT_{1w}^{-1}$. It is found that $R_D$ is the primary dimensionless ratio controlling the role of flexibility during the impact. At conditions with low $R_D$, maximum plate deflections on the order of $1$ mm occur and the records of the dimensionless form of $F_n$, $M_{to}$, $\xi _r$ and $\delta _c$ are nearly identical when plotted vs $tT_s^{-1}$. In these cases, the impact occurs over time scales substantially greater than the plate's natural period, and a quasi-static response ensues with the maximum deflection occurring approximately midway through the impact. For conditions with higher $R_D$ ($\gtrsim 1.0$), the above-mentioned dimensionless quantities depend strongly on $R_D$. These response features indicate a dynamic plate response and a two-way fluid–structure interaction in which the deformation of the plate causes significant changes in the hydrodynamic force and moment.
Chapter 12 traces the role of linguistics within translation studies back to Roman Jakobson’s ‘On Linguistic Aspects of Translation’ of 1959. To illustrate how linguistic theories and concepts have developed and contributed to translation studies, it presents a map drawn up on the basis of a bibliometric survey, focusing on three major stages – pure linguistics, discourse analysis and multimodality. In light of the way in which the relationship has developed between translation studies and aspects of linguistics that have been applied to translation research, in particular multimodal discourse analysis, the chapter suggests how the relationship might continue to develop.
In this paper, we propose a sparse point-plane odometry used in structured environments. Compared to a point-based odometry, we add additional planar constraints into the process of optimization, making the results more reliable. A novel grid-based plane detection algorithm is proposed to cluster sparse points in the same planes. Then, the planes are parameterized by inverse normal and take part in the windowed optimization. By reducing the size of Hessian Matrix, the process of optimization converges faster. Compared to the original point-based odometry, the proposed method performs better on both robustness and efficiency in structured environments.