We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A comprehensive review of cutting-edge solid state research, focusing on its prominent example - quantum dot nanostructures - this book features a broad range of techniques for fabrication of these nano-structured semiconductors and control of their quantum properties. Written by leading researchers, the book considers advanced III-V and II-VI semiconductor quantum dots (QDs) realized by self-assembly, lithography and chemical synthesis; novel QD structures in nanowires and graphene; and transport and optical methods for control of single QDs. Significant attention is given to manipulation of single spins and control of their magnetic environment, and generation of quantum light emitted by single dots in dielectric cavities and coupled to plasmons in metallic structures. It is a valuable resource for graduate students and researchers new to this field.
Semiconductor quantum dots (QDs) have been extensively researched in the past 20 years or so. Over this period, the field has been stimulated by various motivating factors from fabrication of low-threshold temperature-insensitive QD lasers to the use of single spins for quantum computing and single dots for medical markers. In the past decade, refinement of fabrication and experimental techniques enabled researchers in the field to routinely use single QDs to access and control single electrons and holes and their spins, and to generate non-classical light. The focus of this book is on control of optical and transport properties of single and few QDs. The remarkable progress in this fast-developing field in the past three to five years is reported.
The term “quantum dot”, widely used from late 1980s, usually refers to a semiconductor nano-structure. Typical sizes of a quantum dot range from a few nanometers in colloidal dots (also referred to as nano-crystals) to a few hundred nanometers in lithographically fabricated electrostatic structures, so that on average they contain from 103 to 106 atoms. The small physical size is the main common characteristic feature of quantum dots made from different materials and using various fabrication methods. It is usually combined with additional methods for electron energy engineering, for example, surrounding the dot with a higher band-gap semiconductor, applying gate-voltage creating a higher potential barrier around the dot, etc. This gives rise to the most important basic property of QDs: the motion of electrons and holes in QDs is suppressed in all three dimensions.