We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Edited by
Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany,Fabio Castelli, Università degli Studi, Florence,Dylan Jones, University of Toronto,Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
Abstract: In this chapter, we review basic methods for data assimilation used in geodynamic modelling: backward advection (BAD), variational/adjoint (VAR), and quasi-reversibility (QRV). The VAR method is based on a search for model parameters (e.g. mantle temperature and flow velocity in the past) by minimising the differences between present observations of the relevant physical parameters (e.g. temperature derived from seismic tomography, geodetic measurements) and those predicted by forward models for an initial guess temperature. The QRV method is based on introduction of the additional term involving the product of a small regularisation parameter and a higher-order temperature derivative into the backward heat equation. The data assimilation in this case is based on a search of the best fit between the forecast model state and the observations by minimising the regularisation parameter. To demonstrate the applicability of the considered data assimilation methods, a numerical model of the evolution of mantle plumes is considered. Also, we present an application of the data assimilation to dynamic restoration of the thermal state of the mantle beneath the Japanese islands and their surroundings. The geodynamic restoration for the last 40 million years is based on the assimilation of the present temperature inferred from seismic tomography, and constrained by the present plate movement derived from geodetic observations, and paleogeographic and paleomagnetic plate reconstructions. Finally, we discuss some challenges, advantages, and disadvantages of the data assimilation methods.
Edited by
Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany,Fabio Castelli, Università degli Studi, Florence,Dylan Jones, University of Toronto,Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
Abstract: Lava flow and lava dome growth are two main manifestations of effusive volcanic eruptions. Less-viscous lava tends to flow long distances depending on slope topography, heat exchange with the surroundings, eruption rate, and the erupted magma rheology. When magma is highly viscous, its eruption on the surface results in a lava dome formation, and an occasional collapse of the dome may lead to a pyroclastic flow. In this chapter, we consider two models of lava dynamics: a lava flow model to determine the internal thermal state of the flow from its surface thermal observations, and a lava dome growth model to determine magma viscosity from the observed lava dome morphological shape. Both models belong to a set of inverse problems. In the first model, the lava thermal conditions at the surface (at the interface between lava and the air) are known from observations, but its internal thermal state is unknown. A variational (adjoint) assimilation method is used to propagate the temperature and heat flow inferred from surface measurements into the interior of the lava flow. In the second model, the lava dome viscosity is estimated based on a comparison between the observed and simulated morphological shapes of lava dome shapes using computer vision techniques.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.