We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We report on the automatic alignment of a transmission electron microscope equipped with an orbital angular momentum sorter using a convolutional neural network. The neural network is able to control all relevant parameters of both the electron-optical setup of the microscope and the external voltage source of the sorter without input from the user. It can compensate for mechanical and optical misalignments of the sorter, in order to optimize its spectral resolution. The alignment is completed over a few frames and can be kept stable by making use of the fast fitting time of the neural network.
A reformulated implementation of single-sideband ptychography enables analysis and display of live detector data streams in 4D scanning transmission electron microscopy (STEM) using the LiberTEM open-source platform. This is combined with live first moment and further virtual STEM detector analysis. Processing of both real experimental and simulated data shows the characteristics of this method when data are processed progressively, as opposed to the usual offline processing of a complete data set. In particular, the single-sideband method is compared with other techniques such as the enhanced ptychographic engine in order to ascertain its capability for structural imaging at increased specimen thickness. Qualitatively interpretable live results are obtained also if the sample is moved, or magnification is changed during the analysis. This allows live optimization of instrument as well as specimen parameters during the analysis. The methodology is especially expected to improve contrast- and dose-efficient in situ imaging of weakly scattering specimens, where fast live feedback during the experiment is required.
The question how to optimize consumption and portfolio choice over the life cycle has been widely discussed in the literature so far. In this paper we concentrate on a retiree's optimal consumption and portfolio selection over his remaining years of life. We apply the logistic model of mortality thus modeling the empirically observed increase of mortality during the retirement period. The optimal consumption strategy and portfolio choice are established by reducing the Hamilton-Jacobi-Bellmann equation to the explicit solution of an ordinary differential function (ODF) that includes the mortality rate. A general finding is that the Merton-Samuelson result of constant portfolio choice for a constant mortality is confirmed for arbitrary mortality. The portfolio choice is only influenced by risk and return of assets and the retirees’ risk aversion. To get the specific optimal consumption strategy in a realistic situation the logistic model of mortality has been fitted to the data of the Statistical Yearbook for the Federal Republic of Germany 2006/2008. The optimal initial value for the ODF is obtained by numerical methods. The solution provides a large increase in the ratio of optimal consumption to wealth up to about 92 years followed by a sharp decrease. A bequest motive dampens the magnitudes of the ups and downs of the consumption ratio but does not change the basic shape.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.