We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Over the last 25 years, radiowave detection of neutrino-generated signals, using cold polar ice as the neutrino target, has emerged as perhaps the most promising technique for detection of extragalactic ultra-high energy neutrinos (corresponding to neutrino energies in excess of 0.01 Joules, or 1017 electron volts). During the summer of 2021 and in tandem with the initial deployment of the Radio Neutrino Observatory in Greenland (RNO-G), we conducted radioglaciological measurements at Summit Station, Greenland to refine our understanding of the ice target. We report the result of one such measurement, the radio-frequency electric field attenuation length $L_\alpha$. We find an approximately linear dependence of $L_\alpha$ on frequency with the best fit of the average field attenuation for the upper 1500 m of ice: $\langle L_\alpha \rangle = ( ( 1154 \pm 121) - ( 0.81 \pm 0.14) \, ( \nu /{\rm MHz}) ) \,{\rm m}$ for frequencies ν ∈ [145 − 350] MHz.
We present the most sensitive and detailed view of the neutral hydrogen (
${\rm H\small I}$
) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal
${\rm H\small I}$
in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K (
$1.6\,\mathrm{mJy\ beam}^{-1}$
)
$\mathrm{per}\ 0.98\,\mathrm{km\ s}^{-1}$
spectral channel with an angular resolution of
$30^{\prime\prime}$
(
${\sim}10\,\mathrm{pc}$
). We discuss the calibration scheme and the custom imaging pipeline that utilises a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire
${\sim}25\,\mathrm{deg}^2$
field-of-view. We provide an overview of the data products and characterise several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high-velocity cloud with previous ASKAP+Parkes
${\rm H\small I}$
test observations.
The rapid development of high-intensity laser-generated particle and photon secondary sources has attracted widespread interest during the last 20 years not only due to fundamental science research but also because of the important applications of this developing technology. For instance, the generation of relativistic particle beams, betatron-type coherent X-ray radiation and high harmonic generation have attracted interest from various fields of science and technology owing to their diverse applications in biomedical, material science, energy, space, and security applications. In the field of biomedical applications in particular, laser-driven particle beams as well as laser-driven X-ray sources are a promising field of study. This article looks at the research being performed at the Institute of Plasma Physics and Lasers (IPPL) of the Hellenic Mediterranean University Research Centre. The recent installation of the ZEUS 45 TW laser system developed at IPPL offers unique opportunities for research in laser-driven particle and X-ray sources. This article provides information about the facility and describes initial experiments performed for establishing the baseline platforms for secondary plasma sources.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
This report updates the incidence of herbicide-resistant (HR) weeds across western Canada from the last report covering 2007 to 2011. This third round of preharvest surveys was conducted in Saskatchewan in 2014 and 2015, Manitoba in 2016, and Alberta in 2017, totaling 798 randomly selected cropped fields across 28 million ha. In addition, we screened 1,108 weed seed samples submitted by prairie growers or industry between 2012 and 2016. Of 578 fields where wild oat seed was collected, 398 (69%) had an HR biotype: 62% acetyl-CoA carboxylase inhibitor (WSSA Group 1) resistant, 34% acetolactate synthase inhibitor (Group 2) resistant, and 27% Group 1+2 resistant (vs. 41%, 12%, and 8%, respectively, in the previous second-round surveys from 2007 to 2009). The sharp increase in Group 2 resistance is the result of reliance on this site of action to manage Group 1 resistance and the resultant increased selection pressure. There are no POST options to control Group 1+2–HR wild oat in wheat or barley. The rise of Group 2 resistance in green foxtail (11% of sampled fields) and yellow foxtail (17% of Manitoba fields), which was not detected in the previous survey round, parallels the results for wild oat resistance. Various Group 2–HR populations of broadleaf weeds were confirmed, with cleavers and field pennycress being most abundant. Results of submission-sample testing reflected survey results. Although not included in this study, a postharvest survey in Alberta in 2017 indicated widespread Groups 2, 4 (dicamba), and 9 (glyphosate) resistance in kochia and Group 2 resistance in Russian thistle. These surveys bring greater awareness of HR weeds to growers and land managers at local and regional levels, and highlight the urgency to preserve herbicide susceptibility in our key economic weed species.
Laser–solid interactions are highly suited as a potential source of high energy X-rays for nondestructive imaging. A bright, energetic X-ray pulse can be driven from a small source, making it ideal for high resolution X-ray radiography. By limiting the lateral dimensions of the target we are able to confine the region over which X-rays are produced, enabling imaging with enhanced resolution and contrast. Using constrained targets we demonstrate experimentally a $(20\pm 3)~\unicode[STIX]{x03BC}\text{m}$ X-ray source, improving the image quality compared to unconstrained foil targets. Modelling demonstrates that a larger sheath field envelope around the perimeter of the constrained targets increases the proportion of electron current that recirculates through the target, driving a brighter source of X-rays.
We present an indentation-scope that interfaces with confocal microscopy, enabling direct observation of the three-dimensional (3D) microstructural response of coatings on substrates. Using this method, we compared microns-thick polymer coatings on glass with and without silica nanoparticle filler. Bulk force data confirmed the >30% modulus difference, while microstructural data further revealed slip at the glass-coating interface. Filled coatings slipped more and about two times faster, as reflected in 3D displacement and von Mises strain fields. Overall, these data indicate that silica-doping of coatings can dramatically alter adhesion. Moreover, this method compliments existing theoretical and modeling approaches for studying indentation in layered systems.
OBJECTIVES/SPECIFIC AIMS: The morbidity and mortality in adults with single ventricular hearts who have undergone Fontan palliation is poorly defined. These patients have a high burden of arrhythmia, heart failure, and re-operation. We hypothesized that age and type of Fontan predict occurrence of arrhythmia. METHODS/STUDY POPULATION: In total, 205 patients aged 18 years who had undergone a Fontan procedure were identified. Those with incomplete data were excluded. Demographic, anatomic, pharmacologic, imaging, hemodynamic, and electrophysiologic data were collected. The χ2 and Mann-Whitney U tests were used to test significance defined as p<0.05. RESULTS/ANTICIPATED RESULTS: Of the 205 patients identified, 59 had been lost to follow-up. Of the 146 patients (77, 53% female) actively followed 18 (12%) had died at a median (IQR) age of 27 (21–34.3); in patients alive as of 10/2016 the median age was 26 years (22–34). Fontan types were lateral tunnel (LT) (n=79, 54.1%), extracardiac (EC) (n=32, 22%), right atrial to pulmonary artery (RV-PA) (n=28, 19%), and Fontan with Bjork modification (n=4, 2.7%). Systemic left ventricle (n=96, 66%) was more common than systemic right ventricle (n=43, 30%). Of the 146 patients, 101 (69%) had significant morbidity or mortality: 86 (59%) were diagnosed with arrhythmia, 18 (12%) died, and 11 (8%) underwent heart transplants. Frequent procedures included: Fontan revisions/cryoablation in 28 (19%), electrophysiology studies with ablation in 73 (50%), and pacemakers in 53 (36%). Of the arrhythmia diagnoses, 57 (64%) were atrial tachyarrhythmias. RV-PA Fontan procedures were associated with significantly more atrial arrhythmia than all other Fontan types (70% vs. 30%; p<0.01). There was no statistical difference in occurrence of atrial arrhythmia in adults with LT Versus EC Fontans (p=0.3). While patients who had undergone RV-PA and Bjork Fontans were older with median age 34 years, there was no significant difference in age between LT and EC (median 24.0 and 24.5). DISCUSSION/SIGNIFICANCE OF IMPACT: Adult survivors of the Fontan procedure suffer from significant morbidity and mortality. The single most prevalent morbidity is atrial arrhythmia. We conclude that RV-PA Fontans, now obsolete, have the highest prevalence of arrhythmia and that there is no difference in arrhythmia burden between LT and EC Fontans. Given the high prevalence of morbidity and mortality in this population, it is imperative that they be followed by cardiologists with expertise in congenital heart disease.
Worldwide 350 million people suffer from major depression, with the majority of cases occurring in low- and middle-income countries. We examined the patterns, correlates and care-seeking behaviour of adults suffering from major depressive episode (MDE) in China.
Method
A nationwide study recruited 512 891 adults aged 30–79 years from 10 provinces across China during 2004–2008. The 12-month prevalence of MDE was assessed by the Modified Composite International Diagnostic Interview-short form. Logistic regression yielded adjusted odds ratios (ORs) of MDE associated with socio-economic, lifestyle and health-related factors and major stressful life events.
Results
Overall, 0.7% of participants had MDE and a further 2.4% had major depressive symptoms. Stressful life events were strongly associated with MDE [adjusted OR 14.7, 95% confidence interval (CI) 13.7–15.7], with a dose–response relationship with the number of such events experienced. Family conflict had the highest OR for MDE (18.9, 95% CI 16.8–21.2) among the 10 stressful life events. The risk of MDE was also positively associated with rural residency (OR 1.5, 95% CI 1.4–1.7), low income (OR 2.3, 95% CI 2.1–2.4), living alone (OR 2.6, 95% CI 2.3–3.0), smoking (OR 1.4, 95% CI 1.3–1.6) and certain other mental disorders (e.g. anxiety, phobia). Similar, albeit weaker, associations were observed with depressive symptoms. Among those with MDE, about 15% sought medical help or took psychiatric medication, 15% reported having suicidal ideation and 6% reported attempting suicide.
Conclusions
Among Chinese adults, the patterns and correlates of MDE were generally consistent with those observed in the West. The low rates of seeking professional help and treatment highlight the great gap in mental health services in China.
The fragmented ecosystems along the Niagara Escarpment World Biosphere Reserve provide important habitats for biota including lichens. Nonetheless, the Reserve is disturbed by dense human populations and associated air pollution. Here we investigated patterns of lichen diversity within urban and rural sites at three different locations (Niagara, Hamilton, and Owen Sound) along the Niagara Escarpment in Ontario, Canada. Our results indicate that both lichen species richness and community composition are negatively correlated with increasing human population density and air pollution. However, our quantitative analysis of community composition using canonical correspondence analysis (CCA) indicates that human population density and air pollution is more independent than might be assumed. The CCA analysis suggests that the strongest environmental gradient (CCA1) associated with lichen community composition includes regional pollution load and climatic variables; the second gradient (CCA2) is associated with local pollution load and human population density factors. These results increase the knowledge of lichen biodiversity for the Niagara Escarpment and urban and rural fragmented ecosystems as well as along gradients of human population density and air pollution; they suggest a differential influence of regional and local pollution loads and population density factors. This study provides baseline knowledge for further research and conservation initiatives along the Niagara Escarpment World Biosphere Reserve.
Strong recommendations have been made for the periodic developmental surveillance, screening, and evaluation of children with CHD. This supports similar calls for all at-risk children in order to provide timely, structured early developmental intervention that may improve outcomes. The aim of this study was to determine the accuracy of screening for language delay after life-saving therapies using the parent-completed vocabulary screen of the language Development Survey, by comparing screening with the individually administered language scores of the Bayley Scales of Infant and Toddler Development, Third edition.
Method
In total, 310 (92.5%) of 335 eligible term-born children, born between 2004 and 2011, receiving complex cardiac surgery, heart or liver transplantation, or extracorporeal membrane oxygenation in infancy, were assessed at 21.5 (2.8) months of age (lost, 25 (7.5%)), through developmental/rehabilitation centres at six sites as part of the Western Canadian Complex Pediatric Therapies Follow-up Group.
Results
Vocabulary screening delay was defined as scores ⩽15th percentile. Language delay defined as scores >1 SD below the mean was calculated for language composite score, receptive and expressive communication scores of the Bayley-III. Delayed scores for the 310 children were as follows: vocabulary, 144 (46.5%); language composite, 125 (40.3%); receptive communication, 98 (31.6%); and expressive communication, 124 (40%). Sensitivity, specificity, positive predictive values, and negative predictive values of screened vocabulary delay for tested language composite delay were 79.2, 75.7, 68.8, and 84.3%, respectively.
Conclusion
High rates of language delay after life-saving therapies are concerning. Although the screening test appears to over-identify language delay relative to the tested Bayley-III, it may be a useful screening tool for early language development leading to earlier referral for intervention.
Determining the internal layout of archaeological structures and their uses has always been challenging, particularly in timber-framed or earthen-walled buildings where doorways and divisions are difficult to trace. In temperate conditions, soil-formation processes may hold the key to understanding how buildings were used. The abandoned Roman town of Silchester, UK, provides a case study for testing a new approach that combines experimental archaeology and micromorphology. The results show that this technique can provide clarity to previously uncertain features of urban architecture.
Altered corticostriatothalamic encoding of reinforcement is a core feature of depression. Here we examine reinforcement learning in late-life depression in the theoretical framework of the vascular depression hypothesis. This hypothesis attributes the co-occurrence of late-life depression and poor executive control to prefrontal/cingulate disconnection by vascular lesions.
Method
Our fMRI study compared 31 patients aged ⩾60 years with major depression to 16 controls. Using a computational model, we estimated neural and behavioral responses to reinforcement in an uncertain, changing environment (probabilistic reversal learning).
Results
Poor executive control and depression each explained distinct variance in corticostriatothalamic response to unexpected rewards. Depression, but not poor executive control, predicted disrupted functional connectivity between the striatum and prefrontal cortex. White-matter hyperintensities predicted diminished corticostriatothalamic responses to reinforcement, but did not mediate effects of depression or executive control. In two independent samples, poor executive control predicted a failure to persist with rewarded actions, an effect distinct from depressive oversensitivity to punishment. The findings were unchanged in a subsample of participants with vascular disease. Results were robust to effects of confounders including psychiatric comorbidities, physical illness, depressive severity, and psychotropic exposure.
Conclusions
Contrary to the predictions of the vascular depression hypothesis, altered encoding of rewards in late-life depression is dissociable from impaired contingency learning associated with poor executive control. Functional connectivity and behavioral analyses point to a disruption of ascending mesostriatocortical reward signals in late-life depression and a failure of cortical contingency encoding in elderly with poor executive control.
Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to ‘scan the horizon’ to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consultation was a fundamental principle for the development of a collective, international view of the most important future directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific questions through structured debate, discussion, revision and voting. Questions were clustered into seven topics: i) Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world, iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond, and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require innovative experimental designs, novel applications of technology, invention of next-generation field and laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples. Sustained year-round access to Antarctica and the Southern Ocean will be essential to increase winter-time measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the Earth System, and provide predictions at spatial and temporal resolutions useful for decision making. A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration, will be essential as no scientist, programme or nation can realize these aspirations alone.