We consider the following problem:
\begin{alignat*}{2}
-\text{div}(A(x,u)\nabla u)&=u^s+f(x) & \quad &\text{in }\varOmega, \\ u(x)&\ge0 & & \text{in }\varOmega, \\ u(x)&=0 & & \text{on }\p\varOmega,
\end{alignat*}
where $\varOmega$ is an open bounded subset of $\mathbb{R}^N$, $N\ge3$, and
$$
A:\varOmega\times\mathbb{R}\rightarrow M_{N\times N}
$$
is an elliptic matrix such that when $u\to\infty$ is non-coercive.