We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Lava Jato (Car Wash) was one of the largest corruption trials in the world. The Lava Jato taskforce launched a battle against powerful political actors using legal tools creatively and sought to garner public support by resorting to the media. The chapter examines three examples that illustrate these two strategies and unpacks their legal dimensions. It focuses on three decisions by Sergio Moro, Lava Jato’s most prominent judge: ordering the police to bring former president and 2018 presidential candidate Lula Da Silva in for questioning without a previous request, disclosing a recorded conversation obtained during an investigation against Lula, and making public a plea bargain agreement that incriminated Lula. The chapter outlines the political impact of Moro’s actions and examines them in light of current Brazilian legislation on transparency and accountability for judges’ behaviour. It finds that while transparency is a principle that informs criminal trials in Brazil, Moro pushed the existing rules to their limits to gain public support. At the same time, he attempted to influence public opinion by taking advantage of the discretion the Brazilian inquisitorial criminal system provides judges. The chapter also analyses the limitations of Brazilian legislation to prevent this kind of behaviour and points to the challenges of reforming it. It concludes that while courts’ mobilization of the media and creative use of legal tools may increase anti-corruption accountability, the costs of this strategy outweigh its benefits.
Our dominant food system is a primary driver of worsening human and planetary health. Held in March 2022, the Public Health Association of Australia’s Food Futures Conference was an opportunity for people working across the food system to connect and advocate for a comprehensive, intersectoral, whole-of-society food and nutrition policy in Australia to attenuate these issues. Conference themes included food systems for local and global good; ecological nutrition; social mobilisation for planetary and public good; food sovereignty; and food equity. Students and young professionals are integral in transforming food systems, yet are under-represented in the academic workforce, across publishing, scientific societies, and conference plenaries. A satellite event was held to platform initiatives from early career researchers in areas integral for improving planetary and public good. The research topics discussed in this commentary reflect sub-themes of the conference under investigation by early career researchers: food systems governance and regulation; local food policies; commercial determinants of health; sustainable healthy diets; and food equity and sovereignty.
Estuarine ecosystem conditions actively influence the early life stage of fishes. This study reports how environmental factors influenced the ichthyoplankton in a tropical estuary within an Environmental Protection Area by comparing the structure and composition of fish eggs and larval assemblages. A total of 1672 fish larvae and 486 fish eggs were collected. Higher densities of larvae were recorded for Engraulidae, Characidae, Clupeidae, Gerreidae, Mugilidae and Atherinopsidae, and higher egg densities of the families Mugilidae, Clupeidae and Engraulidae were found. The spatio-temporal variations were determined by the environmental predictors salinity, pH, dissolved oxygen and temperature, with salinity influenced by precipitation as one of the main predictors of the distribution of ichthyoplankton. During the rainy season, greater densities of eggs were recorded in the upper and intermediate zones, mainly Characidae and Engraulidae; in the dry season, in the lower zone, there was a greater density of larvae, particularly Atherinopsidae and Mugilidae. The information provided in the present study contributes to our knowledge of nursery habitat requirements for the initial development of marine migrant and resident species in tropical estuaries.
Palmer amaranth (Amaranthus palmeri S. Watson) is one of the most problematic weeds in many cropping systems in the midsouthern United States because of its multiple weedy traits and its propensity to evolve resistance to many herbicides with different mechanisms of action. In Arkansas, A. palmeri has evolved metabolic resistance to S-metolachlor, compromising the effectiveness of an important weed management tool. Greenhouse studies were conducted to evaluate the differential response of A. palmeri accessions from three states (Arkansas, Mississippi, and Tennessee) to (1) assess the occurrence of resistance to S-metolachlor among A. palmeri populations, (2) evaluate the resistance level in selected accessions and their resistant progeny, (3) and determine the susceptibility of most resistant accessions to other soil-applied herbicides. Seeds were collected from 168 crop fields between 2017 and 2019. One hundred seeds per accession were planted in silt loam soil without herbicide for >20 yr and sprayed with the labeled rate of S-metolachlor (1,120 g ai ha−1). Six accessions (four from Arkansas and two from Mississippi) were classified resistant to S-metolachlor. The effective doses (LD50) to control the parent accessions ranged between 73 and 443 g ha−1, and those of F1 progeny of survivors were 73 to 577 g ha−1. The resistance level was generally greater among progeny of surviving plants than among resistant field populations. The resistant field populations required 2.2 to 7.0 times more S-metolachlor to reduce seedling emergence 50%, while the F1 of survivors needed up to 9.2 times more herbicide to reduce emergence 50% compared with the susceptible standard.
This study focuses on the role of the population structure of Leishmania spp. on the adaptive capacity of the parasite. Herein, we investigate the contribution of subpopulations of the L. (V.) braziliensis Thor strain (Thor03, Thor10 and Thor22) in the profile of murine macrophages infection. Infection assays were performed with binary combinations of these subpopulations at stationary phases. The initial interaction time showed major effects on the combination assays, as demonstrated by the significant increase in the infection rate at 5 h. Based on the endocytic index (EI), Thor10 (EI = 563.6) and Thor03 (EI = 497) showed a higher infection load compared to Thor22 (EI = 227.3). However, the EI decreased in Thor03 after 48 h (EI = 447) and 72 h (EI = 388.3) of infection, and showed changes in the infection level in all Thor10/Thor22 combinations. Assays with CellTrace CFSE-labelled Thor22 promastigotes indicated an increase (~1.5 fold) in infection by this subpopulation in the presence of Thor10 when compared to the infection profile of Thor03/Thor22 combinations in the same proportions. In addition, the potential of these subpopulations, alone or in binary combinations, to modulate the expression of cytokines and nitric oxide (NO) in vitro was investigated. Lower NO and tumour necrosis factor-α production levels were observed for all Thor10/Thor22 combinations at 24 h compared to these subpopulations alone. In contrast, Thor03/Thor22 combination assays increased IL-10 production at this time. Collectively, these results provide in vitro evidence on the potential of L. (V.) braziliensis population structure to play a relevant role in a host infection by this parasite.
Biological control is one of the methods available for control of Aedes aegypti populations. We used experimental microcosms to evaluate the effects of actual predation and predation risk by dragonfly larvae (Odonata) on larval development, adult longevity, and adult size of Ae. aegypti. We used six treatments: control, removal, variable density cues (Cues VD), fixed density cues (Cues FD), variable density predator (Predator VD), and fixed density predator (Predator FD) (n = 5 each). Predator treatments received one dragonfly larva. Cue treatments were composed of crushed Ae. aegypti larvae released into the microcosm. For the FD treatments, we maintained a larval density of 200 individuals. The average mortality of Ae. aegypti larvae in the Predator VD treatment was used as the standard mortality for the other treatments. Mosquitoes from the Predator VD and Cues VD treatments developed faster, and adults were larger and had greater longevity compared to all other treatments, likely due to the higher food availability from larval density reduction. High larval density negatively affected larval developmental time, adult size, and longevity. Males were less sensitive to density-dependent effects. Results from this study suggest that the presence of predators may lead to the emergence of adult mosquitoes with greater fitness, causing an overall positive effect on Ae. aegypti population growth rates.
This exploratory study investigated the effects of early v. delayed time-restricted eating (TRE) plus caloric restriction (CR) on body weight, body composition and cardiometabolic parameters in adults with overweight and obesity. Adults (20–40 years) were randomised to one of three groups for 8 weeks: early time-restricted eating (eTRE; 08.00–16.00) plus CR, delayed time-restricted eating (dTRE; 12.00–20.00) plus CR or only CR (CR; 08.00–20.00). All groups were prescribed a 25 % energy deficit relative to daily energy requirements. Thirteen participants completed the study in the eTRE and CR groups and eleven in the dTRE group (n 37). After the interventions, there was no significant difference between the three groups for any of the outcomes. Compared with baseline, significant decreases were observed in the body weight (eTRE group: −4·2 kg; 95 % CI, −5·6, −2·7; dTRE group: −4·8 kg; 95 % CI, −5·9, −3·7; CR: −4·0 kg; 95 % CI, −5·9, −2·1), fat mass (eTRE group: −2·9 kg; 95 % CI, −3·9, −1·9; dTRE group: −3·6 kg; 95 % CI, −4·6, −2·5; CR: −3·1 kg; 95 % CI, −4·3, −1·8) and fasting glucose levels (eTRE group: −4 mg/dl; 95 % CI, −8, −1; dTRE group: −2 mg/dl; 95 % CI, −8, 3; CR: −3 mg/dl; 95 % CI, −8, 2). In a free-living setting, TRE with a energetic deficit, regardless of the time of day, promotes similar benefits in weight loss, body composition and cardiometabolic parameters. However, given the exploratory nature of our study, further investigation is needed to confirm these findings.
Pomatomus saltatrix is a high-value marine pelagic coastal fish, that is fished throughout subtropical and temperate coastal waters around the world. Despite its large economic potential, there are no global data on its genetic diversity, which could compromise the conservation of the species. The aim of this study was to analyse the genetic-evolutionary structuring of the species, with the intention of evaluating different genetic P. saltatrix stocks that may indicate potential species. Based on 157 Cytochrome C Oxidase Subunit 1 sequences, the molecular delimitation analyses of species (distance and coalescence methods), as well as the haplotype network, found profound geographic structuring related to five distinct units with high and significant FST pairwise values. The divergence of these molecular units is mostly related to the Pleistocene glacial and interglacial cycles of climatic oscillations. It is hypothesized that one ancestral lineage, adapted to cold water environments, diversified into two lineages, with one more adapted to warmer environments. The high values of global genetic diversity (π = 0.016; h = 0.96) may be related to the existing profound genetic differentiation. Due to the presence of five Molecular Operational Taxonomic Units (MOTUs) within the species it is necessary to employ different regional management strategies. Traits of low haplotype richness and shallow population contraction were identified in the MOTUs V (Venezuela and Brazil) and III (Turkey and Australia), respectively, representing conservation priorities. Other molecular markers, as well as morphological data, should be explored with the aim of defining the taxonomic status of P. saltatrix stocks.
Colorectal cancer is the third most diagnosed cancer worldwide and linked to dietary/lifestyle factors. Arthrospira (Spirulina) platensis (AP) contains bioactive compounds with beneficial effects in vivo/in vitro. We evaluated the effects of AP feeding against 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis. Male Sprague Dawley rats were given subcutaneous injections of DMH (4 × 40 mg/kg body weight) (G1–G3) or vehicle (G4–G5) twice a week (weeks 3–4). During weeks 1–4, animals were fed a diet containing 1 % (G2) or 2 % (G3–G4) AP powder (w/w). After this period, all groups received a balanced diet until week 12. Some animals were euthanised after the last DMH injection (week 4) for histological, immunohistochemical (Ki-67, γ-H2AX and caspase-3) and molecular analyses (real time-PCR for 91 genes), while other animals were euthanised at week 12 for preneoplastic aberrant crypt foci (ACF) analysis. Both AP treatments (G2–G3) significantly decreased the DMH-induced increase in γ-H2AX (DNA damage) and caspase 3 (DNA damage-induced cell death) in colonic crypts at week 4. In addition, Cyp2e1 (Drug metabolism), Notch1, Notch2 and Jag1 genes (Notch pathway) and Atm, Wee1, Chek2, Mgmt, Ogg1 and Xrcc6 genes (DNA repair) were also down-regulated by 2 % AP feeding (G3) at week 4. A significant reduction in ACF development was observed in both AP-treated groups (G2–G3) at week 12. In conclusion, findings indicate that AP feeding reduced acute colonic damage after DMH, resulting in fewer preneoplastic lesions. Our study provided mechanistic insights on dietary AP-preventive effects against early colon carcinogenesis.
The objective of this retrospective longitudinal study was to evaluate the relationship between dry period length and the production of milk, fat, protein, lactose and total milk solids in the subsequent lactation of Holstein dairy cows under tropical climate. After handling and cleaning of the data provided by the Holstein Cattle Breeders Association of Minas Gerais, data from 32 867 complete lactations of 19 535 Holstein animals that calved between 1993 and 2017 in 122 dairy herds located in Minas Gerais state (Brazil) were analysed. In addition to dry period length, calving age, lactation length, milking frequency, parity, calf status at birth, herd, year, and season of calving were included in the analysis as covariables to account for additional sources of variation. The machine learning algorithms gradient boosting machine, extreme gradient boosting machine, random forest and artificial neural network were used to train models using cross validation. The best model was selected based on four error metrics and used to evaluate the variable importance, the interaction strength between dry period length and the other variables, and to generate partial dependency plots. Random forest was the best model for all production outcomes evaluated. Dry period length was the third most important variable in predicting milk production and its components. No strong interactions were observed between the dry period and the other evaluated variables. The highest milk and lactose productions were observed with a 50-d long dry period, while fat, protein, and total milk solids were the highest with dry period lengths of 38, 38, and 44 d, respectively. Overall, dry period length is associated with the production of milk and its components in the subsequent lactation of Holstein cows under tropical climatic conditions, but the optimum length depends on the production outcome.
Spontaneous capillary imbibition is a classical problem in interfacial fluid dynamics with a broad range of applications, from microfluidics to agriculture. Here we study the duration of the cross-over between an initial linear growth of the imbibition front to the diffusive-like growth limit of Washburn's law. We show that local-resistance sources, such as the inertial resistance and the friction caused by the advancing meniscus, always limit the motion of an imbibing front. Both effects give rise to a cross-over of the growth exponent between the linear and the diffusive-like regimes. We show how this cross-over is much longer than previously thought – even longer than the time it takes the liquid to fill the porous medium. Such slowly slowing-down dynamics is likely to cause similar long cross-over phenomena in processes governed by wetting.
The coronavirus disease 2019 (COVID-19) pandemic has caused a global health crisis and may have affected healthcare-associated infection (HAI) prevention strategies. We evaluated the impact of the COVID-19 pandemic on HAI incidence in Brazilian intensive care units (ICUs).
Methods:
In this ecological study, we compared adult patients admitted to the ICU from April through June 2020 (pandemic period) with the same period in 2019 (prepandemic period) in 21 Brazilian hospitals. We used the Wilcoxon signed rank-sum test in a pairwise analysis to compare the following differences between the pandemic and the prepandemic periods: microbiologically confirmed central-line–associated bloodstream infection (CLABSI) and ventilator-associated pneumonia (VAP) incidence density (cases per 1,000 central line and ventilator days, respectively), the proportion of organisms that caused HAI, and antibiotic consumption (DDD).
Results:
We detected a significant increase in median CLABSI incidence during the pandemic: 1.60 (IQR, 0.44–4.20) vs 2.81 (IQR, 1.35–6.89) (P = .002). We did not detect a significant difference in VAP incidence between the 2 periods. In addition, we detected a significant increase in the proportion of CLABSI caused by Enterococcus faecalis and Candida spp during the pandemic, although only the latter retained statistical significance after correction for multiple comparisons. We did not detect a significant change in ceftriaxone, piperacillin–tazobactam, meropenem, or vancomycin consumption between the studied periods.
Conclusions:
There was an increase in CLABSI incidence in Brazilian ICUs during the first months of COVID-19 pandemic. Additionally, we detected an increase in the proportion of CLABSI caused by E. faecalis and Candida spp during this period. CLABSI prevention strategies must be reinforced in ICUs during the COVID-19 pandemic.
This chapter traces the parallel life stories spun by a single woman – “Benedicta” to some and “Ovídia” to others – in pursuit of freedom in 1880s Brazil. Building upon a vast historiography, it uses a single microhistory to recuperate the social practices, ways of life, and world visions that resided below the surface of judicial testimony. In so doing, it opens an important window through which we can apprehend the ways in which women on the borders of slavery and freedom constructed their identity during Brazil’s age of abolition.
This chapter joins empirical research with theoretical reflections in order to explore the formation of post-emancipation narratives and memories in Brazil’s slaveholding southeast. It is possible, in that region, to reintegrate the histories of freedom, control, and autonomy in the first decades of the twentieth century. In various archives and other historical sources, we can find inscribed – albeit in multivocal form – important intersections in the histories of land, labor, mobility, migration, control, and power. Even though planters sought to maintain freedpeople on the plantations where they had long worked as slaves, freedpeople’s pursuit of autonomy, in the form of control over the rhythms of work and access to land, eventually changed the geography of labor in those areas. In that sense, their experience was common to many societies across the Americas after abolition.
In this work, we evaluated the short time-induced oxidative stress–mediated rapid metabolic and physiological responses of resistant and susceptible Sumatran fleabane [Conyza sumatrensis (Retz.) E. Walker; syn.: Erigeron sumatrensis Retz.] to 2,4-D herbicide. Under fixed conditions (25 C and 65 ± 5% relative humidity), we assayed injury symptoms, chlorophyll a fluorescence, and antioxidative systems of biotypes both resistant and susceptible to 2,4-D (1,005 g ae ha−1). Under 15 versus 25 C temperatures and light and dark conditions, oxidative stress–mediated damage was assayed on plants that received 2,4-D herbicide applications. The injury symptoms observed in the 2,4-D–resistant biotype were rapid necrosis in leaves within 30 min, with the reestablishment of normal growth within 1 to 2 wk after 2,4-D treatment. The basal antioxidant enzyme activities of superoxide dismutase, catalase, and ascorbate peroxidase were greater in the resistant than in the susceptible biotype, although the activities of all enzymes generally did not differ between untreated and treated in the resistant biotype. The resistant biotype showed great reduction (at 1 and 4 h after application) in the photosynthetic electron transport chain performance index, while these metabolic changes were only detected after 4 h in the susceptible biotype. The resistant biotype recovered from the foliar damage 1 to 2 wk after 2,4-D application, while the susceptible biotype was controlled. The production of H2O2 was responsive to temperature and increased more rapidly in the 2,4-D–resistant biotype than in the susceptible one at both 15 and 25 C; however, there was a greater increase at 25 C in the resistant biotype. H2O2 production was not light dependent in 2,4-D–resistant C. sumatrensis, with increases even under dark conditions. The 2,4-D–resistant biotype showed rapid photosynthetic damage, possibly due to the rapid necrosis and leaf disruption, and increased H2O2 content compared with the susceptible biotype.
The low levels of toxicity and cytoprotective effect attributed to Achyrocline satureioides (Lam.) DC, a medicinal plant native to South America, are of interest for bovine mastitis therapy. This research paper reports the hypothesis that a nanoemulsion of macela extract (Achyrocline satureioides) exerts protective effects on bovine mammary alveolar cells -T (MAC-T) and increases the permeation of flavonoid compounds through mammary epithelium. Extract-loaded nanoemulsions (2.5 mg/ml) (NE-ML) (n = 4) were prepared using high-pressure homogenization with varying concentrations of flaxseed oil and Tween 80. Permeation and retention of free and nanoencapsulated quercetin, 3-O-methylquercetin and luteolin were performed on mammary glandular epithelium using Franz diffusion cells. The cell viability was evaluated on mammary epithelial cells (MAC-T lineage) using the MTT method (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) after exposure to loaded and blank nanoemulsions (NE-ML and NE-BL). Necrotic or apoptotic cell death was evaluated by flow cytometry after exposure to nanoemulsions (NE-ML and NE-BL). Subsequently, the cell death was assessed by previously treating MAC-T cells with NE-ML for 23 h, followed by exposure to H2O2 (2 mM) for 1 h. Higher permeation of quercetin and 3-O-methylquercetin in NE-ML was found compared to that of free extract with a final permeated amount of 50.7 ± 3.2 and 111.2 ± 0.6 μg/cm2 compared to 35.0 ± 0.6 and 48.9 ± 1.2, respectively. For NE-BL, the IC50 was at least 1.3% (v/v), while for the NE-ML, it was at least 2.6% (v/v). After exposure to NE-ML (5 and 1.2%, v/v), the percentage of apoptotic cells was reduced (±30%). For the H2O2 assay, the percentage of cells in necrosis was reduced by 40% after exposure to NE-ML1% (v/v) + H2O2 2 mM. The protective effects and increased permeation of macela nanoemulsion make this a promising new candidate for bovine mastitis therapy.
Drought is considered as the major environmental stress affecting coffee production, and high phosphorus (P) supply may alleviate the drought effects on crop metabolism. Here, we hypothesized that high P supply would mitigate the impacts of drought on Arabica coffee physiology, morphology, and biomass accumulation. Potted Arabica coffee plants were grown under two P levels: the recommended P fertilization (P), and twice the recommended fertilization (+P), and two water regimes: well-watered and water withholding for 32 days. Leaf, stem, and root P concentrations were increased under +P, with plants showing higher photosynthesis and growth than the ones receiving the recommended P dose. Higher plant growth under high P supply seems to upregulate leaf photosynthesis through the source–sink relationship. Under the water deficit, the reduction of leaf photosynthesis, stomatal conductance, transpiration, water use efficiency, carboxylation efficiency, chlorophyll content, number of plagiotropic branches, plant leaf area, and vegetative biomass production was similar comparing plants fertilized with the recommended P to those supplied with +P. However, Arabica coffee trees under high P supply and water deficit presented morphological and physiological traits similar to plants under well-watered and recommended P fertilization.
The coronavirus disease 2019 (COVID-19) pandemic was one of the significant causes of death worldwide in 2020. The disease is caused by severe acute coronavirus syndrome (SARS) coronavirus 2 (SARS-CoV-2), an RNA virus of the subfamily Orthocoronavirinae related to 2 other clinically relevant coronaviruses, SARS-CoV and MERS-CoV. Like other coronaviruses and several other viruses, SARS-CoV-2 originated in bats. However, unlike other coronaviruses, SARS-CoV-2 resulted in a devastating pandemic. The SARS-CoV-2 pandemic rages on due to viral evolution that leads to more transmissible and immune evasive variants. Technology such as genomic sequencing has driven the shift from syndromic to molecular epidemiology and promises better understanding of variants. The COVID-19 pandemic has exposed critical impediments that must be addressed to develop the science of pandemics. Much of the progress is being applied in the developed world. However, barriers to the use of molecular epidemiology in low- and middle-income countries (LMICs) remain, including lack of logistics for equipment and reagents and lack of training in analysis. We review the molecular epidemiology literature to understand its origins from the SARS epidemic (2002–2003) through influenza events and the current COVID-19 pandemic. We advocate for improved genomic surveillance of SARS-CoV and understanding the pathogen diversity in potential zoonotic hosts. This work will require training in phylogenetic and high-performance computing to improve analyses of the origin and spread of pathogens. The overarching goals are to understand and abate zoonosis risk through interdisciplinary collaboration and lowering logistical barriers.