We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Around 120 years ago, a burial was discovered in the Argaric settlement of San Antón, 60 km southeast of Alicante (Spain). Although it was similar to many others recorded during more than a century of research, some gold objects found made this burial exceptional in the Iberian Bronze Age funerary record. Based on the most recent archaeological data, this article reviews both the context and the whole set of grave goods. It also explores the intersocial relationships that these gold ornaments suggest, which directly or indirectly seem to point towards both eastern Mediterranean Europe as well as to the Carpathian Basin.
Political objects, like national flags, arouse emotions even when they are subliminal stimuli. Through two experiments that show subliminal stimuli to the subjects, this article analyzes if those emotions are positive or negative ones—that is to say, if they enhance an inclusive reaction or an excluding one. Besides, the article compares the intensity of the flag’s emotional effect with that of the emoticons, which are figures intended to represent emotional reactions or states. Findings confirm that the Spanish flag, as a subliminal stimulus, influences the opinions of the participants. However, it has had a lower effect than that obtained in previous, similar experiments. Emoticons produce a much more intense type of response than flags. The experiments (n = 85; n = 126) enlarge the knowledge about the emotional effects of political objects of nonconscious perception. Besides, we present an original methodological contribution: the use of emoticons to alter political views.
Research into the relationship between ecosystem services and human well-being, including poverty alleviation, has blossomed. However, little is known about who has produced this knowledge, what collaborative patterns and institutional and funding conditions have underpinned it, or what implications these matters may have. To investigate the potential implications of such production for conservation science and practice, we address this by developing a social network analysis of the most prolific writers in the production of knowledge about ecosystem services and poverty alleviation. We show that 70% of these authors are men, most are trained in either the biological sciences or economics and almost none in the humanities. Eighty per cent of authors obtained their PhD from universities in the EU or the USA, and they are currently employed in these regions. The co-authorship network is strongly collaborative, without dominant authors, and with the top 30 most cited scholars being based in the USA and co-authoring frequently. These findings suggest, firstly, that the production of knowledge on ecosystem services and poverty alleviation research has the same geographical and gender biases that characterize knowledge production in other scientific areas and, secondly, that there is an expertise bias that also characterizes other environmental matters. This is despite the fact that the research field of ecosystem services and poverty alleviation, by its nature, requires a multidisciplinary lens. This could be overcome through promoting more extensive collaboration and knowledge co-production.
According to Childe, the Bronze Age in Europe is thought to be the first ‘golden age’ in European history. The development of metallurgy, clearly associated with the production of weapons, and the expansion of exchange networks covering all types of goods are considered essential in the process of consolidation of social elites, and, by extension, of social inequalities. The significance of textile production has, however, been undervalued as a specialized craft and as a manufacturing process that creates cultural differences and signals social inequalities. Being associated with domestic contexts rather than with specialized workshops, textile production in the eastern Iberian Peninsula has been underestimated; it is addressed here, as is its potential importance in societies immersed in a process of social stratification.
The set of monomial convergence of the bounded holomophic functions on B_{c0} and of m-homogeneous polynomials on c0 was studied in Chapter 10. Here the space c0 is replaced by some other l_p spaces, or even by polynomials on an arbitrary Banach sequence space and holomorphic functions on Reinhardt domains. The only complete case is p=1, where the set of monomial convergence of the m-homogeneous polynomials is exactly l_1, and the set of monomial convergence of the bounded holomorphic functions on the open unit ball of l_1 is again the ball. For other p’s upper and lower bounds are presented that give a pretty tight description.
Given a family of formal power series, its set of monomial convergence is defined as those z’s for which the series converges. The main focus is given to the sets of monomial convergence of the m-homogeneous polynomials on c0 and of the bounded holomorphic functions on B_{c0}. The first one is completely described in terms of the Marcinkiewicz space l_{(2m)/(m-1), ∞}. For the second one there is no complete description. If z is such that limsup (log n)^(1/2) ∑_j^n (z*_j)^{2} < 1 (where z* is the decreasing rearrangement of z), then z is in the set of monomial convergence of the bounded holomorphic functions. Also, if z belongs to the set of monomial convergence, then the limit superior is ≤ 1. This is related to Bohr’s problem (see Chapter 1). First of all, if M denotes the supremum over all q so that l_q is contained in the set of monomial convergence of the bounded holomorphic functions on Bc0, then S=1/M. But this can be more precise: S is the infimum over all σ >0 so that the sequence (p_n^(-σ))_n (being p_n the n-th prime number) belongs to the set of monomial convergence of the bounded holomorphic functions on Bc0.
A classical result of Fatou gives that every bounded holomorphic function on the disc has radial limits for almost every point in the torus, and the limit function belongs to the Hardy space H_\infty of the torus. This property is no longer true when we consider vector-valued functions. The Banach spaces X for which this property is satisfied are said to have the analytic Radon-Nikodym property (ARNP). Some important equivalent reformulations of ARNP are studied in this chapter. Among others, X has ARNP if and only if each X-valued H_p- function f on the disc has radial limits almost everywhere on the torus (and not only H_\infty-functions). Even more, in this case each such f has non-tangential limits within any Stolz region. The basic tools are subharmonic functions and certain maximal inequalities. Finally, it is shown that if X has the ARNP, then every L_p of functions taking values in X with a finite measure also has ARNP.
This is a short introduction to the theory of holomorphic functions in finitely and infinitely many variables. We begin with functions in finitely many variables, giving the definition of holomorphic function. Every such function has a monomial series expansion, where the coefficients are given by a Cauchy integral formula. Then we move to infinitely many variables, considering functions defined on B_{c0}, the open unit ball of the space of null sequences. Holomorphic functions are defined by means of Fréchet differentiability. We have versions of Weierstrass and Montel theorems in this setting. Every holomorphic function on B_{c0} defines a family of coefficients through a Cauchy integral formula and a (formal) monomial series expansion. Every bounded analytic (represented by a convergent power series) function is holomorphic. Hilbert’s criterion, that gives conditions on a family of scalars so that it is attached to a bounded holomorphic function on B_{c0}. Homogeneous polynomials are those entire functions having non-zero coefficients only for multi-indices of a given order. We show how these are related to multilinear forms on c0 through the polarization formulas.
The text is closed by coming back to Bohr’s absolute convergence problem, this time for vector-valued Dirichlet series. For a Banach space X abscissas and strips S(X) and S_p(X), analogous to those defined in Chapters 1 and 12 are considered. It is shown that all these strips equal 1-1/cot(X), where cot(X) is the optimal cotype of X.
We study the relationship between Hardy spaces of functions on the polytorus and certain spaces of holomorphic functions. We deal first with functions in finitely many variables, and later we jump to the infinite dimensional setting. For each N we consider the space of holomorphic functions g on the N-dimensional polydisc for which the L_p norms of g(rz) for 0<r<1 are bounded (known as the Hardy space of holomorphic functions). For each p these two Hardy spaces (of integrable functions on the N-dimensional polytorus and the N-dimensional polydisc) are isometrically isomorphic. The main tool in the proof is the Poisson operator (defined in Chapter 5). For the infinite dimensional case, we define the space of holomorphic functions g on l_2 ∩ Bc0 whose restrictions to the first N variables all belong to the corresponding Hardy space, and the norms are uniformly bounded (in N). These Hardy spaces of holomorphic functions on l_2 ∩ Bc0 and the Hardy spaces of integrable functions on the infinite-dimensional polytorus are isometrically isomorphic. The jump is given using a Hilbert criterion for Hardy spaces.
We continue the study initiated in Chapter 7 of polynomials with small norms. This time the norm of the polynomial is not taken as the supremum on the n-dimensional polydisc, we take it on B_X, the unit ball of some Banach space. The goal is to show that, given a polynomial, signs can be found in such a way that the norm of the new polynomial, whose coefficients are the original ones multiplied by the signs, has small norm. We do this with three different approaches. The first two approaches use Rademacher random variables as the main probabilistic tools. The first one is based on finding out how many balls of a fixed radius are needed to cover B_X while the second one uses entropy integrals and a good estimate for the entropy numbers of the inclusions between l_p spaces. The third approach is different, and relies on Gaussian random variables, Slepian’s lemma and the fact that Rademacher averages are dominated by Gaussian averages. This approach also allows to get estimates for vector-valued polynomials.
Littlewood’s and Bohnenblust-Hille’s inequalities (recall Chapter 6) bound certain sequence norms of the coefficients of a polynomial by a constant (not depending on the number of variables) times the supremum of the polynomial on the polydisc. A similar problem is handled here, replacing the polydisc by the unit ball of C^n with some p-norm. Optimal exponents (that depend on the degree of the polynomial and on p) are given. The proof relies on the interplay between homogeneous polynomials and multilinear mappings and an analogous inequality for multilinear mappings. This one is proved by giving a generalized mixed inequality that bounds a mixed norm of the coefficients of a matrix by the supremum on the p-balls of the associated multilinear mapping.
We give the solution of Bohr’s problem, showing that in fact S=1/2. This is done by considering an analogous problem where only m-homogeneous Dirichlet series are taken into account (defining, then, S^m). Using the isometry between homogeneous Dirichlet series and polynomials, the problem is translated into a problem for these. For each m we produce an m-homogeneous polynomial P such that for every q > (2m)/(m-1) there is a point z in l_q for which the monomial series expansion of P does not converge at z. This shows that, contrary to what happens for finitely many variables, holomorphic functions in infinitely many variables may not be analytic. This also shows that (2m)/(m-1) ≤ S^m for every m and then gives the result. There is more. For each fixed 0 ≤ σ ≤ 1/2 there is a Dirichlet series whose abscissas of uniform and absolute convergence are at distance exactly σ.
The solution of Bohr’s problem (see Chapter 4) implies that for every Dirichlet series in \mathcal{H}_\infty, the sum ∑ |a_n| n^(-s) is finite for every Re s > 1/2, and we ask if we can in fact get to Re s=1/2. This is addressed by considering, for Dirichlet polynomials, the quotient between ∑ | a_n | and the norm (in \mathcal{H}_\infty) of the polynomial. We define S(x) as the supremum over all Dirichlet polynomials of length x ≥ 2 of these quotients. It is shown that S(x)=exp(- (1/\sqrt{2} + o(1)) (log n loglog n)^(1/2)) as x goes to ∞. This is reformulated in terms of the Sidon constant of the monomials as characters of the infinite-dimensional polydisc. The proof uses the hypercontractive Bohnenblust-Hille inequality and a fine decomposition of the natural numbers as those having ‘big’ and ‘small’ prime factors. Also, a version for homegeneous Dirichlet series is given.
This is a short introduction to the basics of the theory of normed tensor products. The m-fold tensor product of linear spaces is defined through the universal property. If the involved spaces are normed, then the projective and injective norms on the tensor product are. Basic properties are given: the metric mapping property and their relationship with continuous linear mappings. The symmetric m-fold tensor product and the symmetric projective and injective norms are defined analogously. These are related to the m-homogeneous polynomials.