We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a re-discovery of G278.94+1.35a as possibly one of the largest known Galactic supernova remnants (SNRs) – that we name Diprotodon. While previously established as a Galactic SNR, Diprotodon is visible in our new Evolutionary Map of the Universe (EMU) and GaLactic and Extragalactic All-sky MWA (GLEAM) radio continuum images at an angular size of $3{{{{.\!^\circ}}}}33\times3{{{{.\!^\circ}}}}23$, much larger than previously measured. At the previously suggested distance of 2.7 kpc, this implies a diameter of 157$\times$152 pc. This size would qualify Diprotodon as the largest known SNR and pushes our estimates of SNR sizes to the upper limits. We investigate the environment in which the SNR is located and examine various scenarios that might explain such a large and relatively bright SNR appearance. We find that Diprotodon is most likely at a much closer distance of $\sim$1 kpc, implying its diameter is 58$\times$56 pc and it is in the radiative evolutionary phase. We also present a new Fermi-LAT data analysis that confirms the angular extent of the SNR in gamma rays. The origin of the high-energy emission remains somewhat puzzling, and the scenarios we explore reveal new puzzles, given this unexpected and unique observation of a seemingly evolved SNR having a hard GeV spectrum with no breaks. We explore both leptonic and hadronic scenarios, as well as the possibility that the high-energy emission arises from the leftover particle population of a historic pulsar wind nebula.
On January 1, 2024, an earthquake with a maximum seismic intensity of 7 struck the Noto Peninsula in Ishikawa Prefecture, Japan, causing significant casualties and displacement. The Noto Peninsula has a high aging rate, with 49.5% of its population aged 65 or older. This case study focuses on a 68-year-old woman who developed aspiration pneumonia after being admitted to a welfare shelter. The case highlights the challenges of managing chronic medical care during disasters, particularly for the elderly.
We propose a method for generating rule sets as global and local explanations for tree-ensemble learning methods using answer set programming (ASP). To this end, we adopt a decompositional approach where the split structures of the base decision trees are exploited in the construction of rules, which in turn are assessed using pattern mining methods encoded in ASP to extract explanatory rules. For global explanations, candidate rules are chosen from the entire trained tree-ensemble models, whereas for local explanations, candidate rules are selected by only considering rules that are relevant to the particular predicted instance. We show how user-defined constraints and preferences can be represented declaratively in ASP to allow for transparent and flexible rule set generation, and how rules can be used as explanations to help the user better understand the models. Experimental evaluation with real-world datasets and popular tree-ensemble algorithms demonstrates that our approach is applicable to a wide range of classification tasks.
Coping styles can be improved by dyadic palliative care interventions and may alleviate patients’ and family caregivers’ distress. Moreover, family caregivers’ preloss resilience protects against depression after bereavement. This study aimed to determine the types of coping styles can be encouraged to increase resilience.
Methods
A self-reported questionnaire survey was administered to family caregivers at the 4 palliative care units, and their resilience was assessed using the Connor–Davidson Resilience Scale (CD-RISC) and their coping styles were assessed using the Brief Coping Orientation to Problem Experienced, as well as their background characteristics.
Results
Among 291 caregivers with a mean CD-RISC score of 56.2 (standard deviation: 16.13), internal locus of control, educational level, and history of psychotropic drug use were associated with resilience. After adjusting for the aforementioned factors, more frequent use of positive coping styles such as active coping (Spearman’s ρ = 0.29), acceptance (ρ = 0.29), positive reframing (ρ = 0.29), planning (ρ = 0.24), and humor (ρ = 0.18), was found to be associated with higher resilience. On the contrary, more frequent use of negative coping styles such as behavioral disengagement (ρ = −0.38), self-blame (ρ = −0.27), and denial (ρ = −0.14) was found to be associated with less resilience.
Significance of results
By assessing internal locus of control, educational level, and history of psychotropic medication use of family caregivers, as factors associated with their respective resilience, may help identify less resilient family caregivers who are at risk for developing major depression after bereavement. In addition, coping skill-based educational interventions targeting patients and their family caregivers that focus on specific coping styles associated with resilience may increase family caregivers’ resilience, resulting in less emotional distress and a lower risk of major depression after bereavement.
Lottocracy and epistocracy have received deeply insightful attention as political regimes. Herein, by conducting an experiment using an online survey, we explored the extent to which public opinion is receptive to political decisions under various regimes regarding two environmental policies: education policy and environmental tax policy. By doing so, we examined whether the presence of tax burdens affected the acceptability of political regimes, i.e., electoral democracy, lottocracy, and epistocracy. Our results revealed that decisions based on lottocracy and epistocracy were significantly less acceptable than those based on electoral democracy. Nevertheless, lottocratic and epistocratic decisions were more acceptable regarding the issue of environmental tax policy. The difference was mainly attributed to people's rejection of environmental tax policy offsetting their rejection of lottocracy and epistocracy. This suggests, first, that decisions based on electoral democracy increase policies' acceptability if they do not involve taxation, and second, that the status of whether or not a decision is electoral does not significantly affect policy acceptability if taxation is involved, whereas on the other hand, people are sensitive to differences between the regimes if the policy does not involve taxation.
In recent years many essays have been made public and various opinions have been advanced on youth. I would like to conceive one of the salient characteristics in the consciousness and the behavior pattern of today's youth as “play-orientedness” and center my discussion on that particular inclination. “Play-orientedness” here is not intended to mean merely “activeness in sports and hobbies,” nor is it synonymous with “pleasure-orientedness.” It is a broader term and is rather close in meaning to what is commonly called “the spirit of play.” We might perhaps define it as “play as a way of life,” or an inclination to introduce elements of “play” into one's daily life and make his actual life “play-like.”
Cation-exchange equilibrium for Ca-K-montmorillonite was studied at 35°, 50°, and 90°C and at three total normalities of the equilibrium solution (0.1, 0.05, and 0.01 N). Changes of the standard free energy for the exchange from K-montmorillonite to Ca-montmorillonite were determined to be −53, −270, and −393 cal/eq at 35°, 50°, and 90°C, respectively. Changes of the standard enthalpy and entropy were 1.7 kcal/eq and 5.6 cal/eq/degree at 35°C, respectively. The sign of the change of the standard free energy was found to be determined mainly by the entropy change, in particular, by the hydration entropy of the cations.
The calculation of the excess functions indicates that the mixing model of Ca-K-montmorillonite approximates that of a regular solution. Montmorillonite having potassium equivalent ion fraction of 0.1 to 0.7 consists of a random interstratification of Ca-montmorillonite (15.6 Å) and K-montmorillonite (12.6 Å).
While past research suggested that living arrangements are associated with suicide death, no study has examined the impact of sustained living arrangements and the change in living arrangements. Also, previous survival analysis studies only reported a single hazard ratio (HR), whereas the actual HR may change over time. We aimed to address these limitations using causal inference approaches.
Methods
Multi-point data from a general Japanese population sample were used. Participants reported their living arrangements twice within a 5-year time interval. After that, suicide death, non-suicide death and all-cause mortality were evaluated over 14 years. We used inverse probability weighted pooled logistic regression and cumulative incidence curve, evaluating the association of time-varying living arrangements with suicide death. We also studied non-suicide death and all-cause mortality to contextualize the association. Missing data for covariates were handled using random forest imputation.
Results
A total of 86,749 participants were analysed, with a mean age (standard deviation) of 51.7 (7.90) at baseline. Of these, 306 died by suicide during the 14-year follow-up. Persistently living alone was associated with an increased risk of suicide death (risk difference [RD]: 1.1%, 95% confidence interval [CI]: 0.3–2.5%; risk ratio [RR]: 4.00, 95% CI: 1.83–7.41), non-suicide death (RD: 7.8%, 95% CI: 5.2–10.5%; RR: 1.56, 95% CI: 1.38–1.74) and all-cause mortality (RD: 8.7%, 95% CI: 6.2–11.3%; RR: 1.60, 95% CI: 1.42–1.79) at the end of the follow-up. The cumulative incidence curve showed that these associations were consistent throughout the follow-up. Across all types of mortality, the increased risk was smaller for those who started to live with someone and those who transitioned to living alone. The results remained robust in sensitivity analyses.
Conclusions
Individuals who persistently live alone have an increased risk of suicide death as well as non-suicide death and all-cause mortality, whereas this impact is weaker for those who change their living arrangements.
Droplet spreading is ubiquitous and plays a significant role in liquid-based energy systems, thermal management devices and microfluidics. While the spreading of non-volatile droplets is quantitatively understood, the spreading and flow transition in volatile droplets remains elusive due to the complexity added by interfacial phase change and non-equilibrium thermal transport. Here we show, using both mathematical modelling and experiments, that the wetting dynamics of volatile droplets can be scaled by the spatial–temporal interplay between capillary, evaporation and thermal Marangoni effects. We elucidate and quantify these complex interactions using phase diagrams based on systematic theoretical and experimental investigations. A spreading law of evaporative droplets is derived by extending Tanner's law (valid for non-volatile liquids) to a full range of liquids with saturation vapour pressure spanning from $10^1$ to $10^4$ Pa and on substrates with thermal conductivity from $10^{-1}$ to $10^3\ {\rm W}\ {\rm m}^{-1}\ {\rm K}^{-1}$. In addition to its importance in fluid-based industries, the conclusions also enable a unifying explanation to a series of individual works including the criterion of flow reversal and the state of dynamic wetting, making it possible to control liquid transport in diverse application scenarios.
This study presents a search method for a solution space that aligns with a designer's design intent. The proposed method uses multiobjective optimization to determine the size of the narrowed solution space and the weakness of the constraint relationships between the design variables. The suitability of the proposed method is tested by applying it to the design problem of an electric motor for an EV, aiming to provide designers with solution spaces that offer a high degree of freedom in the later design stages and that have weaker constraint relationships among the design variables.
As children advance through school, derived words become increasingly common in their reading materials. Previous studies have shown that children’s knowledge of derivational morphology develops relatively slowly, but there is more to learn about this development. This study examined differences in knowledge of the form and meaning of suffixes across grade levels (Grades 3, 5, and 8) and different types of derivational suffixes (adjectives and nominals). We assessed 309 English-speaking children on word reading and receptive vocabulary tests and two tasks designed to assess the form (orthographic knowledge) and meaning (semantic knowledge) of 28 derivational suffixes (14 adjectives and 14 nominals). Overall, our findings showed a significant improvement in identifying and understanding derivational suffixes from Grade 3 to Grade 5 and a smaller, but still significant, improvement from Grade 5 to Grade 8. Our findings regarding suffix types were mixed. While written forms of adjectives were identified more accurately than nominals across all grades, this advantage did not extend to the students’ understanding of the meaning of the suffixes. These results highlight the distinction between the identification of suffixes and the understanding of their meaning. We discuss our results in relation to suffix frequency in children’s reading materials.
This article traces the fraught history of the file system’s adoption by the Japanese Public Prosecutor’s Office (PPO) from the late 1940s to the early 1950s, when the U.S. General Headquarters (GHQ), the Supreme Commander for the Allied Powers, decentralized the PPO’s power and transformed it into a “democratic” judicial agency. This is also a postwar history of the introduction of Taylorism-derived scientific management to white collar office work and Weberian visions of bureaucratic rationality into government offices, as part of the democratization of public administration steered by various sections within GHQ. Among the key changes was a guarantee of the right to receive a “speedy trial.” The essay argues that, while that guarantee was meant to secure human-rights protections for the accused, the file system introduced to the PPO translated the constitutional imperative of the rights of the accused into the pursuit of efficient scientific management, in which democracy was an operationalized socio-technical achievement. This logistical channel led to the co-emergence of democracy and modern rational bureaucracy, with each evincing mutual cause and effect. American reforms invested technicality with the promise of “democracy,” but as this essay shows, senior Japanese officials envisioned it as a means to rebuild a centralized information network.
The continuous conversion of smectite to illite in samples from the Shinzan hydrothermal alteration area of Japan has been examined by X-ray powder diffraction (XRD) and transmission (TEM) and analytical transmission electron microscopy (AEM). TEM shows that randomly interstratified illite/ smectite (I/S) containing 100-50% expandable layers exhibits a flakey shape, whereas regularly and partially ordered interstratified I/S having 50-0% expandable layers exhibits a lath-like habit. An early- formed lath of regularly interstratified I/S is typically <35 Å in thickness and 300–500 Å in width; these dimensions gradually increase with decreasing percentage of expandable layers. XRD shows that the lathshaped I/S has a 1M polytype mica structure. AEM shows that the interlayer K content of flakey I/S increases monotonously with decreasing percentage of expandable layers in the range 100-50% expandable layers, whereas the interlayer K content of lath-shaped I/S increases along a different trend from that for the flakey I/S in the range 50-0% expandable layers. These observations suggest that randomly interstratified I/S is fundamentally smectite that is undergoing K-fixation and dissolution and that regularly and partially ordered interstratified I/S are immature illite which is still growing. Consequently, they suggest a mechanism for the hydrothermal smectite-to-illite conversion that is based on the K-fixation in and dissolution of smectite and the precipitation and growth of thin illite particles. Furthermore, these data suggest that the kinetics of smectite dissolution and illite growth are the most important factors controlling the smectite-to-illite conversion.
The validity of the saddle/001 method for estimating the percentage of smectite layers in randomly interstratified illite/smectite (I/S) minerals as a routine laboratory technique has been examined with respect to the effects of the crystallite size distribution (N = number of layers) of I/S and the degree of preferred orientation of crystallites in the prepared specimen. X-ray powder diffraction experiments of I/S clays indicated that the crystallite size distribution was 3 < N < 12; these values were supported satisfactorily by the variation of the d(002) value of the samples. An analysis of the Lorentz factor concerning the degree of preferred orientation of crystallites indicated that a calibration curve calculated using the random powder Lorentz factor and the above crystallite size distribution fit the data better than an assumption of perfect orientation. Consequently, if a calibration curve of the saddle/001 ratio is used to estimate the percentage of smectite layers in I/S, an error of 10–15% should be expected from the variable crystallite size distribution of actual samples, in which I/S dominates over other phyllosilicate phases that give reflection between 10–14 Å. This method is useful, however, in estimating the relative percentage of smectite layers in randomly interstratified I/S for samples examined under identical experimental conditions.
Reactions between hydroxy-Al ions and orthosilicic acid as influenced by citric acid were studied at an initial Si concentration of 1.6 × 10−3 M, Si/Al molar ratios of 0.5 and 1.0, OH/Al molar ratios of 1.0-3.0, and citric acid/Al molar ratios of 0-0.3. In the absence of citric acid and at OH/A1 ratios of 1.0-2.8, imogolite (>0.01 μm) was dominant in the precipitates. At citric acid/Al ratios of 0.01-0.1, imogolite and/or pseudoboehmite were dominant in the precipitates at OH/Al ratios of 1.0 and 2.0, and imogolite and/or ill-defined aluminosilicate complexes at OH/Al ratio of 2.8. Instead of allophane or “proto-imogolite” allophane being the predominant species in the precipitates, the formation of ill-defined aluminosilicate complexes at OH/Al ratio of 3.0 was steadily promoted by increasing the solution citric acid/Al ratios from 0 to 0.3. The freeze-dried soluble products (<0.01 μ) ranged from silica gel to “proto-imogolite,” depending upon the basicity of Al and the level of citric acid of the parent solution. The amount of “proto-imogolite” increased with increasing citric acid/Al ratios from 0 to 0.1 in solution. Complexing low molecular weight organic acids, such as citric acid, impeded the formation of the short-range ordered aluminosilicates, allophanes and imogolite.
Lithium-bearing donbassite and tosudite were found in veins in hydrothermally altered granite (Beauvoir granite) in the northern part of the Massif Central, France. The two minerals are characterized by their high Li contents and low Mg and Fe contents; their structural formulae are: $${\left( {S{i_{3.81}}A{l_{0.19}}} \right)_{\Sigma = 4.00}}{O_{10}}{\left( {A{l_{3.81}}L{i_{0.52}}Fe_{0.01}^{2 + }C{a_{0.02}}M{g_{0.01}}} \right)_{\Sigma - 4.38}}{\left( {OH} \right)_8}{\left( {N{a_{0.07}}{K_{0.04}}} \right)_{\Sigma = 0.11}}$$ for donbassite and $${\left( {S{i_{3.50}}A{l_{0.50}}} \right)_{\Sigma = 4.00}}{O_{10}}{\left( {A{l_{2.95}}L{i_{0.22}}Fe_{0.01}^{3 + }T{i_{0.01}}} \right)_{\Sigma = 3.19}}{\left( {OH} \right)_5}{\left( {C{a_{0.01}}N{a_{0.15}}{K_{0.18}}} \right)_{\Sigma = 0.34}}$$ for tosudite.
These chemical compositions indicate that the donbassite is an intermediate member of the donbassite-cookeite solid solution series and that the tosudite consists of interstratified Li-donbassite and beidellite. Both Li-bearing minerals show thermal behavior distinct from those previously reported for dioctahedral chlorite and tosudite.
Petrographie investigation of drill cuttings from the Echassières area indicates that the two minerals were formed in an intermediate stage of hydrothermal alteration following an early stage characterized by formation of muscovite (2M1) at >350°C and before the latest stage characterized by deposition of kaolinite and randomly interstratified illite/smectite at < 100°C. Moreover, tosudite occurs in the upper part of the granite, whereas donbassite is restricted to the lower part, suggesting the formation of tosudite at lower temperatures.
A complete conversion series for mica/smectites was found in a hydrothermal alteration envelope around Kuroko-type ore deposits at the Shinzan area, Akita Prefecture, Northeast Japan. The minerals are an alteration product of volcanic glass of Miocene age and are commonly associated with zeolites and silica minerals. Degrees of ordering of interstratification of the minerals change discontinuously from Reichweite g = 0 (100–55% expandable layers) to g = 1 (45–20% expandable layers), and from g = 1 to g = 2 (<20% expandable layers). This pattern of conversion differs from the behavior of mica/smectites during burial diagenesis which undergo a continuous change in ordering type, and from the behavior of rectorite which displays a constant expandability and ordering (45–55%) over a wide range of conditions. Differences between these minerals were also found in the relationships between expandability and total layer charge, and between expandability and number of non-exchangeable interlayer cations. In mica/smectites from the Shinzan area, chemical changes in the interlayers and tetrahedral and octahedral sites are consistent with a reaction in which K-enrichment and K-fixation in the interlayers are controlled by an increase in negative layer charge. This conversion occurred in response to a steep geothermal gradient and migrating hydrothermal solutions.
The chemical compositions of chlorite-smectite mixed-layered minerals (C/S) from the Ohyu caldera (Inoue, 1985) are analyzed using M+-4Si-3R2+ diagrams. The assumed original saponite has the following composition: Si3.54Al0.46O10Al0.173Fe2+1.385Mg1.295Mn0.02(OH)2M+0.56. Random C/S minerals (100 to 80% expandable layers) are interpreted as an interstratification of the starting 2:1 smectite layer with a A1XR2+3−x interlayer. The 2:1 smectite layer charge remains constant but Ca, Na, K cations are replaced by a Al-R2+ complex ion. The brucitic layer (produced by the polymerization of the complex ions) and the 2:1 smectite layer form a 14 Å non-expandable phase having a composition different from a true chlorite.
The true chlorite layers first appear in the ordered (corrensite) phase composed of a high charge saponite: Si3.35A10.65O10R2+3(OH)2M+0.65 and an octahedral vacancy-free chlorite Si2.90A11.10O10Al1.10R2+4.90(OH)8. The recrystallization of the original trioctahedral smectite into a high-charge saponite decreases the b-dimension difference with the chlorite component.
From these data, it is suggested that the trioctahedral smectite-to-chlorite conversion is controlled by three reactions: 1. fixation and polymerization of Al-R2+ complex ions in the interlayer region of the original smectite producing a 14 Å non-expandable phase (the interlayering of this phase with the original smectite gives the randomly interstratified C/S mineral. 2. dissolution of these random mixed-layered minerals and precipitation of corrensite. 3. dissolution of corrensite and growth of Fe-rich chlorite.
The exchange of Na, K, and Ca ions in vermiculite has been studied between 50 and 150°C at a total normality of 0.1. The free energy changes were negative in the Na → K, Ca → K, and Na → Ca exchange reactions, and the cation preference in the vermiculite was Na < Ca < K in the temperature range examined. The enthalpy changes, calculated by application of the van't Hoff equation to the relation between equilibrium constant and temperature, were positive. The cation preference in the vermiculite seems to have been largely controlled by the increase in entropy which was due to the positive values of the entropy change term in the solid for the Na-K and Ca-K exchanges and the positive values of the entropy change in the solution for the Na-Ca exchange. From a thermodynamic analysis of the cation-mixing properties in vermiculite, the observed free energy change in the Na-K exchange was determined solely by the differences of the intrinsic electrostatic binding energy of the cations on the clay surface. That in the Na-Ca exchange was interpreted by taking into account an extra interaction energy of Ca-Ca pairs in addition to the intrinsic energy change. Furthermore, an additional interaction energy between K ions and the clay surface appears to have been added to the free energy change in the Ca-K exchange. In the Na → K and Ca → K exchange reactions a structural modification occurred in the K-equivalent fraction (X̄K) range 0.05–0.6, and a regularly interstratified phase of 15-Å and 10-Å members was formed at 0.05 < X̄K < 0.4.
The amount of K fixed in K- and Ca-saturated montmorillonite, vermiculite (trioctahedral), rectorite-type and IMII-ordered mica/montmorillonites was measured as a function of time (1–64 days), temperature (25o-300°C), pH (6.0, 9.7, and 10.7), and K-concentration (0.02 and 1.0 M) in solution. The amount of K fixed by the clays generally increased with increasing temperature, pH, and K-concentration and reached saturation in response to each experimental condition in 5 or 6 days. The K-montmorillonite and K-vermiculite fixed considerable amounts of K even at 25°C. Fixed K in montmorillonite increased with an increase of the layer charge which is also influenced significantly by the interlayer cation. In detail, the behavior in K-fixation was specific to each clay.
The type of structural transformation with K-fixation was different for each clay. In montmorillonite, especially, the type of transformation was related to the cationic composition of the system; in K homoionic system, montmorillonite transformed rapidly into illite/montmorillonite with about 40% expandable layers at 300°C and in a mixed cation system with Ca and K, it reacted gradually to random illite/montmorillonites with increasing temperature. These data indicate that the cation-exchange process of a natural pore solution plays an important role in the gradual transformation of detrital montmorillonite to illite.