Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T02:28:22.740Z Has data issue: false hasContentIssue false

Microbial detachment from biofilms

Published online by Cambridge University Press:  03 June 2010

Gillian F. Moore
Affiliation:
Environmental Microbiology Research Group, Exeter University, Exeter, UK
Braden C. Dunsmore
Affiliation:
Environmental Microbiology Research Group, Exeter University, Exeter, UK
Steven M. Jones
Affiliation:
Environmental Microbiology Research Group, Exeter University, Exeter, UK
Christopher W. Smejkal
Affiliation:
Environmental Microbiology Research Group, Exeter University, Exeter, UK
Jana Jass
Affiliation:
Department of Microbiology, Umeå University, Umeå, Sweden
Paul Stoodley
Affiliation:
Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
Hilary M. Lappin-Scott
Affiliation:
Environmental Microbiology Research Group, Exeter University, Exeter, UK
David G. Allison
Affiliation:
University of Manchester
P. Gilbert
Affiliation:
University of Manchester
H. M. Lappin-Scott
Affiliation:
University of Exeter
Get access

Summary

INTRODUCTION

This chapter reviews the broad area of biofilm detachment, the mechanisms of detachment and the methods used to study this important process. Two case studies are included: the first of these focuses on the control of clinical biofilms; the second case study examines detachment in the water industry.

Biofilms are dynamic structures found in a wide variety of both natural and man-made environments. Their formation has been well studied; for example, Characklis (1990) described eight different stages of biofilm accumulation (Table 1 and Fig. 1). There has been much research into the initial attachment of micro-organisms to surfaces, including the effect of electrostatic interactions and electrochemical forces (Bos et al., 1999). The physiological changes that attaching cells undergo have also been examined; for example, the production of surface appendages such as fimbriae (Austin et al., 1998). In contrast to the work undertaken on attachment, detachment has received little attention although many researchers regard it as a crucial stage of biofilm development (Stewart, 1993; Allison et al., 1999).

Bryers (1988) classified the detachment process into four separate groups: abrasion, grazing, erosion and sloughing. Detachment from the biofilm can be directly caused by the collision or rubbing together of surfaces on which the biofilm has developed, leading to abrasive detachment. Larger organisms feeding on the biofilm can indirectly cause detachment through grazing. Erosion and sloughing refer to physical or chemical processes, which indirectly affect the biofilm structure, leading to detachment. Erosion refers to the continual removal of cells or small groups of cells from the biofilm, whereas sloughing is the loss of discrete amounts of biofilm.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×