Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T06:43:41.540Z Has data issue: false hasContentIssue false

8 - Acalculia and Gerstmann's syndrome

Published online by Cambridge University Press:  10 October 2009

Laurent Cohen
Affiliation:
Hôpital de la Salpêtrière, Paris; Cognitive Neuroimaging Unit, Orsay
Anna J. Wilson
Affiliation:
Cognitive Neuroimaging Unit, Orsay
Véronique Izard
Affiliation:
Cognitive Neuroimaging Unit, Orsay
Stanislas Dehaene
Affiliation:
Cognitive Neuroimaging Unit, Orsay
Olivier Godefroy
Affiliation:
Université de Picardie Jules Verne, Amiens
Julien Bogousslavsky
Affiliation:
Université de Lausanne, Switzerland
Get access

Summary

Introduction

Neurologists' knowledge of number processing impairments is often limited to the notion that acalculia is part of Gerstmann's syndrome (Benton, 1992; Gerstmann, 1940). It may extend to the classical typology proposed by Hécaen, who distinguished aphasic, spatial, and anarithmetic acalculia (Hécaen et al., 1961). Actually, modern research on acalculia (a term coined by Henschen, 1920) has made considerable progress from this point, starting in the 1980s within the expanding framework of cognitive neuropsychology, and soon yielding refined cognitive models (Dehaene, 1992; Deloche and Seron, 1982; McCloskey et al., 1986). Presently, it is an important component of the cognitive neuroscience of numerical abilities, having close links to the methodology used in and theories arising from numerical cognition studies performed in animals, human infants, or normal adults. These methodologies include behavioral measures, functional and anatomical imaging, and electrophysiological techniques (for reviews see Butterworth, 1999; Dehaene and Cohen, 1995; Dehaene et al., 2004).

Beyond its fundamental interest, acalculia constitutes a frequent and incapacitating disorder following acquired, mostly left-hemispheric, brain lesions (Jackson and Warrington, 1986; Rosselli and Ardila, 1989). It interferes with many everyday life activities such as shopping, assessing the balance of a bank account, etc.

In this chapter we will summarize the basic facets of the normal number processing abilities, sketch a simple model of their anatomical implementation, describe an illustrative variety of calculation disorders, briefly discuss the relationships of acalculia, Gerstmann's syndrome and the parietal lobes, and finally propose some guidelines for the assessment and rehabilitation of acalculia in stroke patients.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. R., Qin, Y., Stenger, V. A. and Carter, C. S. (2004). The relationship of three cortical regions to an information-processing model. J. Cogn. Neurosci., 16, 637–53.CrossRefGoogle Scholar
Anderson, S. W., Damasio, A. R. and Damasio, H. (1990). Troubled letters but not numbers: Domain specific cognitive impairments following focal damage in frontal cortex. Brain, 113, 749–66.CrossRefGoogle Scholar
Benton, A. L. (1961). The fiction of the Gerstmann syndrome. J. Neurol., 24, 176–81.Google ScholarPubMed
Benton, A. L. (1992). Gerstmann's syndrome. Arch. Neurol., 49, 445–7.CrossRefGoogle ScholarPubMed
Bogousslavsky, J., Regli, F. and Assal, G. (1986). The syndrome of unilateral tuberothalamic artery territory infarction. Stroke, 17, 434–41.CrossRefGoogle ScholarPubMed
Butterworth, B. (1999). The Mathematical Brain. London: Macmillan.Google Scholar
Butterworth, B., Cappelletti, M. and Kopelman, M. (2001). Category specificity in reading and writing: the case of number words. Nat. Neurosci., 4, 784–6.CrossRefGoogle ScholarPubMed
Butterworth, B., Cipolotti, L. and Warrington, E. K. (1996). Short-term memory impairment and arithmetical ability. Q. J. Exp. Psychol., 49A, 251–62.CrossRefGoogle Scholar
Caporali, A., Burgio, F. and Basso, A. (2000). The natural course of acalculia in left-brain-damaged patients. Neurol. Sci., 21, 143–9.CrossRefGoogle ScholarPubMed
Cappelletti, M., Butterworth, B. and Kopelman, M. (2001). Spared numerical abilities in a case of semantic dementia. Neuropsychologia, 39, 1224–39.CrossRefGoogle Scholar
Caramazza, A. and McCloskey, M. (1987). Dissociations of calculation processes. In Deloche, G. and Seron, X.., eds., Mathematical Disabilities: A cognitive Neuropsychological Perspective. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 221–34.Google Scholar
Cohen, L. and Dehaene, S. (1991). Neglect dyslexia for numbers? A case report. Cogn. Neuropsychol., 8, 39–58.Google Scholar
Cohen, L. and Dehaene, S. (1994). Amnesia for arithmetic facts: A single case study. Brain and Lang., 47, 214–32.CrossRefGoogle ScholarPubMed
Cohen, L. and Dehaene, S. (1995). Number processing in pure alexia: the effect of hemispheric asymmetries and task demands. NeuroCase, 1, 121–37.CrossRefGoogle Scholar
Cohen, L. and Dehaene, S. (1996). Cerebral networks for number processing: Evidence from a case of posterior callosal lesion. NeuroCase, 2, 155–74.CrossRefGoogle Scholar
Cohen, L. and Dehaene, S. (2000). Calculating without reading: Unsuspected residual abilities in pure alexia. Cogn. Neuropsychol., 17, 563–83.CrossRefGoogle ScholarPubMed
Cohen, L., Dehaene, S., Chochon, F., Lehéricy, S. and Naccache, L. (2000a). Language and calculation within the parietal lobe: A combined cognitive, anatomical and fMRI study. Neuropsychologia, 138, 1426–40.CrossRefGoogle Scholar
Cohen, L., Dehaene, S., Naccache, L., et al. (2000b). The visual word form area: Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain, 123, 291–307.CrossRefGoogle Scholar
Cohen, L., Dehaene, S. and Verstichel, P. (1994). Number words and number non-words: A case of deep dyslexia extending to arabic numerals. Brain, 117, 267–79.CrossRefGoogle ScholarPubMed
Cohen, L., Verstichel, P. and Dehaene, S. (1997). Neologistic jargon sparing numbers: a category specific phonological impairment. Cogn. Neuropsychol., 14, 1029–61.Google Scholar
Corbett, A. J., McCusker, E. A. and Davidson, O. R. (1986). Acalculia following a dominant-hemisphere subcortical infarct. Arch. Neurol., 43, 964–6.CrossRefGoogle ScholarPubMed
Dagenbach, D. and McCloskey, M. (1992). The organization of arithmetic facts in memory: Evidence from a brain-damaged patient. Brain Cogn., 20, 345–66.CrossRefGoogle ScholarPubMed
Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.CrossRefGoogle ScholarPubMed
Dehaene, S. (2003). The neural basis of the Weber-Fechner law: a logarithmic mental number line. Trends Cogn. Sci., 7, 145–7.CrossRefGoogle ScholarPubMed
Dehaene, S. and Changeux, J. P. (1993). Development of elementary numerical abilities: A neuronal model. J. Cogn. Neurosci., 5, 390–407.CrossRefGoogle ScholarPubMed
Dehaene, S. and Cohen, L. (1991). Two mental calculation systems: A case study of severe acalculia with preserved approximation. Neuropsychologia, 29, 1045–74.CrossRefGoogle ScholarPubMed
Dehaene, S. and Cohen, L. (1994). Dissociable mechanisms of subitizing and counting: Neuropsychological evidence from simultanagnosic patients. J. Exp. Psychol. [Hum. Percept.], 20, 958–75.CrossRefGoogle ScholarPubMed
Dehaene, S. and Cohen, L. (1995). Towards an anatomical and functional model of number processing. Math. Cogn., 1, 83–120.Google Scholar
Dehaene, S. and Cohen, L. (1997). Cerebral pathways for calculation: Double dissociations between Gerstmann's acalculia and subcortical acalculia. Cortex, 33, 219–50.CrossRefGoogle Scholar
Dehaene, S., Molko, N., Cohen, L. and Wilson, A. J. (2004). Arithmetic and the brain. Curr. Opin. Neurobiol., 14, 218–24.CrossRefGoogle Scholar
Dehaene, S., Piazza, M., Pinel, P. and Cohen, L. (2003). Three parietal circuits for number processing. Cogn. Neuropsychol., 20, 487–506.CrossRefGoogle ScholarPubMed
Dejerine, J. (1892). Contribution à l'étude anatomo-pathologique et clinique des différentes variétés de cécité verbale. Mémoires de la Société de Biologie, 4, 61–90.Google Scholar
Delazer, M. and Benke, T. (1997). Arithmetic facts without meaning. Cortex, 33, 697–710.CrossRefGoogle ScholarPubMed
Delazer, M., Domahs, F., Bartha, L., et al. (2003). Learning complex arithmetic – an fMRI study. Brain Res. Cogn., 18, 76–88.CrossRefGoogle ScholarPubMed
Delazer, M., Domahs, F., Lochy, A., et al. (2004). Number processing and basal ganglia dysfunction: a single case study. Neuropsychologia, 42, 1050–62.CrossRefGoogle ScholarPubMed
Delazer, M., Girelli, L., Grana, A. and Domahs, F. (2003a). Number processing and calculation – normative data from healthy adults. Clin. Neuropsychol., 17, 331–50.CrossRefGoogle ScholarPubMed
Delazer, M., Lochy, A., Jenner, C., Domahs, F. and Benke, T. (2002). When writing 0 (zero) is easier than writing O (o): a neuropsychological case study of agraphia. Neuropsychologia, 40, 2167–77.CrossRefGoogle Scholar
Dellatolas, G., Deloche, G., Basso, A. and Claros-Salinas, D. (2001). Assessment of calculation and number processing using the EC301 battery: cross-cultural normative data and application to left- and right-brain damaged patients. J. Int. Neuropsychol. Soc., 7, 840–59.Google ScholarPubMed
Deloche, G. and Seron, X. (1982). From one to 1: An analysis of a transcoding process by means of neuropsychological data. Cognition, 12, 119–49.CrossRefGoogle ScholarPubMed
Deloche, G. and Seron, X. (1984). Semantic errors reconsidered in the procedural light of stack concepts. Brain Lang., 21, 59–71.CrossRefGoogle ScholarPubMed
Deloche, G., Seron, X. and Ferrand, I. (1989). Reeducation of number transcoding mechanisms: A procedural approach. In Seron, X. and Deloche, G., eds., Cognitive Approach in Neuropsychological Rehabilitation. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Domahs, F., Bartha, L. and Delazer, M. (2003). Rehabilitation of arithmetic abilities: Different intervention strategies for multiplication. Brain Lang., 87, 165–6.CrossRefGoogle Scholar
Fasotti, L., Bremer, J. J. C. B. and Eling, P. A. T. M. (1992a). Influence of improved test encoding on arithmetical word problem solving after frontal lobe damage. Neuropsychol. Rehabil., 2, 3–20.CrossRefGoogle Scholar
Fasotti, L., Eling, P. A. T. M. and Bremer, J. J. C. B. (1992b). The internal representation of arithmetical word problem sentences: Frontal and posterior patients compared. Brain Cogn., 20, 245–63.CrossRefGoogle Scholar
Feigenson, L., Dehaene, S. and Spelke, E. (2004). Core systems of number. Trends Cogn. Sci., 8, 307–14.CrossRefGoogle Scholar
Ferro, J. M. and Botelho, M. A. S. (1980). Aphasia for arithmetical signs: A cause of disturbed calculation. Cortex, 16, 175–80.CrossRefGoogle ScholarPubMed
Garcia-Orza, J., Leon-Carrion, J. and Vega, O. (2003). Dissociating arabic numeral reading and basic calculation: a case study. Neurocase, 9, 129–39.CrossRefGoogle ScholarPubMed
Gazzaniga, M. S. and Hillyard, S. A. (1971). Language and speech capacity of the right hemisphere. Neuropsychologia, 9, 273–80.CrossRefGoogle ScholarPubMed
Gazzaniga, M. S. and Smylie, C. E. (1984). Dissociation of language and cognition: A psychological profile of two disconnected right hemispheres. Brain, 107, 145–53.CrossRefGoogle ScholarPubMed
Gerstmann, J. (1940). Syndrome of finger agnosia disorientation for right and left agraphia and acalculia. Arch. Neurol. Psychiat., 44, 398–408.CrossRefGoogle Scholar
Geschwind, N. (1965). Disconnection syndromes in animals and man. Brain, 88, 237–94.CrossRefGoogle Scholar
Girelli, L., Bartha, L. and Delazer, M. (2002). Strategic learning in the rehabilitation of semantic knowledge. Neuropsychol. Rehabil., 12, 41–61.CrossRefGoogle Scholar
Girelli, L., Delazer, M., Semenza, C. and Denes, G. (1996). The representation of arithmetical facts: evidence from two rehabilitation studies. Cortex, 32, 49–66.CrossRefGoogle ScholarPubMed
Girelli, L. and Seron, X. (2000). La revalidation des troubles du calcul et du traitement des nombres. In X. Seron and M. van der Linden, eds., Traité de Neuropsychologie Clinique. Vol. 2. Marseille: Solal, 215–25.Google Scholar
Grafman, J., Kampen, D., Rosenberg, J., Salazar, A. and Boller, F. (1989). Calculation abilities in a patient with a virtual left hemispherectomy. Behav. Neurol., 2, 183–94.Google Scholar
Grafman, J., Passafiume, D., Faglioni, P. and Boller, F. (1982). Calculation disturbances in adults with focal hemispheric damage. Cortex, 18, 37–49.CrossRefGoogle ScholarPubMed
Hauser, M. D., Tsao, F., Garcia, P. and Spelke, E. S. (2003). Evolutionary foundations of number: spontaneous representation of numerical magnitudes by cotton-top tamarins. Proc. R. Soc. Lond. B. Biol. Sci., 270, 1441–6.CrossRefGoogle ScholarPubMed
Hécaen, H., Angelergues, R. and Houillier, S. (1961). Les variétés cliniques des acalculies au cours des lésions rétro-rolandiques: Approche statistique du problème. Rev. Neurol. 105, 85–103.Google Scholar
Henschen, S. E. (1920). Klinische und anatomische Beitraege zur Pathologie des Gehirns. Stockholm: Nordiska Bokhandeln.Google Scholar
Hittmair-Delazer, M., Sailer, U. and Benke, T. (1995). Impaired arithmetic facts but intact conceptual knowledge – a single case study of dyscalculia. Cortex, 31, 139–47.CrossRefGoogle ScholarPubMed
Hittmair-Delazer, M., Semenza, C. and Denes, G. (1994). Concepts and facts in calculation. Brain, 117, 715–28.CrossRefGoogle ScholarPubMed
Holender, D. and Peereman, R. (1987). Differential processing of phonographic and logographic single-digit numbers by the two hemispheres, In Deloche, G. and Seron, X., eds., Mathematical Disabilities: A Cognitive Neuropsychological Perspective. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 43–86.Google Scholar
Houde, O. and Tzourio-Mazoyer, N. (2003). Neural foundations of logical and mathematical cognition. Nat. Rev. Neurosci., 4, 507–14.CrossRefGoogle ScholarPubMed
Isaacs, E. B., Edmonds, C. J., Lucas, A. and Gadian, D. G. (2001). Calculation difficulties in children with a very low birthweight. A neural correlate. Brain, 124, 1701–7.CrossRefGoogle ScholarPubMed
Jackson, M. and Warrington, E. K. (1986). Arithmetic skills in patients with unilateral cerebral lesions. Cortex, 22, 611–20.CrossRefGoogle ScholarPubMed
Lampl, Y., Eshel, Y., Gilad, R. and Sarova-Pinhas, I. (1994). Selective acalculia with sparing of the subtraction process in a patient with left parietotemporal hemorrhage. Neurology, 44, 1759–61.CrossRefGoogle Scholar
Langdon, D. W. and Warrington, E. K. (1997). The abstraction of numerical relations: a role for the right hemisphere in arithmetic?J. Int. Neuropsychol. Soc., 3, 260–8.Google ScholarPubMed
Lemer, C., Dehaene, S., Spelke, E. and Cohen, L. (2003). Approximate quantities and exact number words: Dissociable systems. Neuropsychologia, 41, 1942–58.CrossRefGoogle ScholarPubMed
Lochy, A., Domahs, F. and Delazer, M. (in press). Rehabilitation of acquired calculation and number processing disorders. In Campbell, J., ed., The Handbook of Mathematical Cognition.
Luria, A. R. (1959). Disorders of simultaneous perception in a case of bilateral occipito-parietal brain injury. Brain, 82, 437–49.CrossRefGoogle Scholar
Luria, A. R. (1966). The Higher Cortical Functions in Man. New York: Basic Books.Google Scholar
Macaruso, P., McCloskey, M. and Aliminosa, D. (1993). The functional architecture of the cognitive numerical-processing system: Evidence from a patient with multiple impairments. Cogn. Neuropsychol., 10, 341–76.CrossRefGoogle Scholar
Mandler, G. and Shebo, B. J. (1982). Subitizing: An analysis of its component processes. J. Exp. Psychol. [Gen.], 111, 1–21.CrossRefGoogle ScholarPubMed
Mayer, E., Martory, M. D., Pegna, A. J., et al. (1999). A pure case of Gerstmann syndrome with a subangular lesion. Brain, 122 (Pt 6), 1107–20.CrossRefGoogle ScholarPubMed
McCloskey, M., Aliminosa, D. and Sokol, S. M. (1991). Facts rules and procedures in normal calculation: Evidence from multiple single-patient studies of impaired arithmetic fact retrieval. Brain Cogn., 17, 154–203.CrossRefGoogle ScholarPubMed
McCloskey, M., Sokol, S. M. and Goodman, R. A. (1986). Cognitive processes in verbal-number production: Inferences from the performance of brain-damaged subjects. J. Exp. Psychol. Gen., 115, 307–30.CrossRefGoogle ScholarPubMed
McNeil, J. E. and Warrington, E. K. (1994). A dissociation between addition and subtraction within written calculation. Neuropsychologia, 32, 717–28.CrossRefGoogle ScholarPubMed
Molko, N., Cachia, A., Riviere, D., et al. (2003). Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of genetic origin. Neuron, 40, 847–58.CrossRefGoogle Scholar
Moyer, R. S. and Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–20.CrossRefGoogle ScholarPubMed
Noël, M. P. (2001). Numerical cognition. In B. Rapp, ed., The Handbook of Cognitive Neuropsychology. Philadelphia: Psychology Press.
Pesenti, M., Seron, X. and Linden, M. (1994). Selective impairment as evidence for mental organisation of arithmetical facts: BB, a case of preserved subtraction?Cortex, 30, 661–71.CrossRefGoogle ScholarPubMed
Pica, P., Lemer, C., Izard, V. and Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science (in press).Google Scholar
Pinel, P., Dehaene, S., Riviere, D. and LeBihan, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage, 14, 1013–26.CrossRefGoogle Scholar
Rizzo, M. and Robin, D. A. (1990). Simultanagnosia: A deficit of sustained attention yields insights on visual information processing. Neurology, 40, 447–55.CrossRefGoogle Scholar
Rosselli, M. and Ardila, A. (1989). Calculation deficits in patients with right and left hemisphere damage. Neuropsychologia, 27, 607–17.CrossRefGoogle ScholarPubMed
Seymour, S. E., Reuter-Lorenz, P. A. and Gazzaniga, M. S. (1994). The disconnection syndrome: basic findings reaffirmed. Brain, 117, 105–15.CrossRefGoogle ScholarPubMed
Simon, O., Mangin, J. F., Cohen, L., Bihan, D. and Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33, 475–87.CrossRefGoogle ScholarPubMed
Thioux, M., Pillon, A., Samson, D., et al. (1998). The isolation of numerals at the semantic level. Neurocase. 4.CrossRefGoogle Scholar
Thompson, J. C., Abbott, D. F., Wheaton, K. J., Syngeniotis, A. and Puce, A. (in press). Digit representation is more than just hand waving. Cogn. Brain Res.Google Scholar
Harskamp, N. J. and Cipolotti, L. (2001). Selective impairments for addition, subtraction and multiplication. Implications for the organisation of arithmetical facts. Cortex, 37, 363–88.CrossRefGoogle ScholarPubMed
Harskamp, N. J., Rudge, P. and Cipolotti, L. (2002). Are multiplication facts implemented by the left supramarginal and angular gyri?Neuropsychologia, 40, 1786–93.CrossRefGoogle ScholarPubMed
Vuilleumier, P. and Rafal, R. (1999). Both means more than two: localizing and counting in patients with visuospatial neglect. Nat. Neurosci., 2, 783–4.CrossRefGoogle ScholarPubMed
Warrington, E. K. (1982). The fractionation of arithmetical skills: A single case study. Q. J. Exp. Psychol., 34A, 31–51.CrossRefGoogle Scholar
Whalen, J., McCloskey, M., Lindemann, M. and Bouton, G. (2002). Representing arithmetic table facts in memory: Evidence from acquired impairments. Cogn. Neuropsychol., 19, 505–22.CrossRefGoogle ScholarPubMed
Zorzi, M., Priftis, K. and Umilta, C. (2002). Brain damage: neglect disrupts the mental number line. Nature, 417, 138–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×