Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T11:05:13.381Z Has data issue: false hasContentIssue false

42 - Methods of measuring energy balance: calorimetry and doubly labelled water

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
Pieter J. J. Sauer
Affiliation:
Department of Pediatrics, University Hospital Groningen, Groningen, The Netherlands
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Thureen, P. J.Measuring energy expenditure in preterm and unstable infants. J. Pediatr. 2003;142:366–7.CrossRefGoogle ScholarPubMed
Sauer, P. J. J., Dane, J. H., Visser, H. K. A.Longitudinal studies on metabolic rate, heat production and energy cost of growth in low birth weight infants. Pediatr. Res. 1984;18:254–9.CrossRefGoogle Scholar
Sauer, P. J. J. Neonatal energy metabolism. In Cowett, R. M. ed. Principles of Perinatal–neonatal Metabolism. New York: Springer Verlag; 1998:1001–25.CrossRefGoogle Scholar
Carnielli, V. P., Verlato, G., Benini, F., Rossi, K.Metabolic and respiratory effects of theophylline in the preterm infant. Arch. Dis. Child. Fetal Neonatal Edn. 2000;83:F39–43.CrossRefGoogle ScholarPubMed
ElHennawy, A. A., Sparks, J. W., Armentrout, D., Huseby, V., Berseth, C. L.Erythromycin fails to improve feeding outcome in feeding-intolerant preterm infants. J. Pediatr. Gastroenterol. Nutr. 2003;37:281–6.CrossRefGoogle ScholarPubMed
McClure, R. J., Newell, S. J.Randomised controlled trial of trophic feeding and gut motility. Arch. Dis. Child. Fetal Neonatal Edn. 1999;80:F54–8.CrossRefGoogle ScholarPubMed
Ryser, G., Jequier, E.Study by direct calorimetry of thermal balance on the first day of life. Eur. J. Clin. Invest. 1972;2:176–87.CrossRefGoogle ScholarPubMed
Meis, S. J., Dove, E. L., Bell, E. F.et al.A gradient-layer calorimeter for measurement of energy expenditure of infants. Am. J. Physiol. 1994;266:R1052–60.Google ScholarPubMed
Dane, H. J., Holland, W. P. J., Sauer, P. J. J., Visser, H. K. A.A calorimetric system for metabolic studies of newborn infants. Clin. Phys. Physiol. Meas. 1985;6:36–46.CrossRefGoogle Scholar
Weir, J. B.New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949;109:1.CrossRefGoogle ScholarPubMed
Thureen, P. J., Phillips, R. E., DeMarie, M. P.et al.Technical and methodologic considerations for performance of indirect calorimetry in ventilated and non-ventilated preterm infants. Crit. Care Med. 1997;25:171–9.CrossRefGoogle Scholar
Behrends, M., Kernbach, M., Bräuer, A.et al.In vitro validation of a metabolic monitor for gas exchange measurements in ventilated neonates. Intens. Care Med. 2001;27:228–35.CrossRefGoogle ScholarPubMed
Marks, K. H., Coen, P., Kerrigan, J. R.et al.The accuracy and precision of an open-circuit system to measure oxygen consumption and carbon dioxide production in neonates. Pediatr. Res. 1987;21:58–65.CrossRefGoogle ScholarPubMed
Handley, A. C., Spencer, S. A., Rakowski, S.Critical appraisal and further development of the methodology for open circuit calorimetry in neonates. Early Hum. Dev. 1991;26:167–76.CrossRefGoogle ScholarPubMed
Ferrannini, E.The theoretical basis of indirect calorimetry: a review. Metabolism 1988;37:287–301.CrossRefGoogle Scholar
Shortland, G. J., Fleming, P. J., Walter, J. H.Validation of a portable indirect calorimetry system for measurement of energy expenditure in sick preterm infants. Arch. Dis. Child. 1992;67:1207–11.CrossRefGoogle ScholarPubMed
Ultman, J. S., Bursztein, S.Analysis of error in the determination of respiratory gas exchange at varying FIO sub 2. J. Appl. Physiol. 1981;350:210–16.CrossRefGoogle Scholar
Dane, H. J., Sauer, P. J. J., Visser, H. K. A.Oxygen consumption and CO2 production of low birthweight infants in two sleep states. Biol. Neonate 1985;47:205–10.CrossRefGoogle ScholarPubMed
Bell, E. F., Rios, G. R., Wilmoth, P. K.Estimation of 24-hour energy expenditure from shorter measurement periods in preterm infants. Pediatr. Res. 1986;20:646–9.CrossRefGoogle Scholar
Schulze, K., Stefanski, M., Masterson, J.An analysis of the variability in estimates of bioenergetic variables in preterm infants. Pediatr. Res. 1986;20:422–7.CrossRefGoogle ScholarPubMed
Perring, J., Henderson, M., Cooke, R. J.Factors affecting the measurement of energy expenditure during energy balance studies in preterm infants. Pediatr. Res. 2000;48:518–23.CrossRefGoogle ScholarPubMed
Kalhan, S. C., Denne, S. C.Energy consumption in infants with bronchopulmonary dysplasia. J. Pediatr. 1990;116:662–4.CrossRefGoogle ScholarPubMed
Chwals, W. J., Laly, K. P., Woolley, M. M.Indirect calorimetry in mechanically ventilated infants and children: measurement accuracy with absence of audible airleak. Crit. Care Med. 1992;20:768–70.CrossRefGoogle ScholarPubMed
Forsyth, J. S., Crighton, A.An indirect calorimetry system for ventilator dependent very low birthweight infants. Arch. Dis. Child. 1992;67:315–19.CrossRefGoogle ScholarPubMed
Mayfield, S. R.Technical and clinical testing of a computerized indirect calorimeter for use in mechanically ventilated neonates. Am. J. Clin. Nutr. 1991;54:30–4.CrossRefGoogle ScholarPubMed
Bauer, K., Ketteler, J., Laurenz, M., Versmold, H.In vitro validation and clinical testing of an indirect calorimetry system for ventilated preterm infants that is unaffected by endotracheal tube leaks and can be used during nasal continuous positive airway pressure. Pediatr. Res. 2001;49:394–401.CrossRefGoogle Scholar
Bauer, K., Laurenz, M., Ketteler, J., Versmold, H.Longitudinal study of energy expenditure in preterm neonates <30 weeks gestation during the first three postnatal weeks. J. Pediatr. 2003;142:390–6.CrossRefGoogle ScholarPubMed
Lifson, N., Gordon, G. B., McClintock, R.Measurements of total carbon dioxide production by means of D218O. J. Appl. Physiol. 1955;7:704–10.CrossRefGoogle Scholar
Ainslie, P. N., Reilly, T., Westerterp, K. R.Estimating human energy expenditure: a review of techniques with particular reference to doubly labeled water. Sports Med. 2003;33:683–98.CrossRefGoogle Scholar
Wells, J. C. K.Energy metabolism in infants and children. Nutrition 1998;14:817–20.CrossRefGoogle ScholarPubMed
Schoeller, D. A., Webb, P.Five-day comparison of the doubly labeled water method with respiratory gas exchange. Am. J. Clin. Nutr. 1984;40:153–8.CrossRefGoogle ScholarPubMed
Klein, P. D., James, W. P. T., Wong, W. W.Calorimetric validation of the doubly labeled water method for determination of energy expenditure in man. Hum. Nutr. Clin. Nutr. 1984;38C:95–106.Google Scholar
Roberts, S. D., Coward, W. A., Schlingenseipen, K. H.Comparison of the doubly labeled water (2H218O) method with indirect calorimetry and a nutrient-balance study for simultaneous determination of energy expenditure, water intake and metabolizable energy intake in preterm infants. Am. J. Clin. Nutr. 1986;44:315–22.CrossRefGoogle Scholar
Jones, P. J. H., Winthrop, A. L., Schoeller, D. A.Evaluation of doubly labeled water for measuring energy expenditure during changing nutrition. Am. J. Clin. Nutr. 1988;47:799–804.CrossRefGoogle ScholarPubMed
Westerterp, K. R., Lafeber, H. N., Sulkers, E. J.Comparison of short term indirect calorimetry and doubly labeled water method for the assessment of energy expenditure in preterm infants. Biol. Neonate 1991;60:75–82.CrossRefGoogle ScholarPubMed
Leith, C. A., Ahlrichs, J., Karn, C., Denne, S. C.Energy expenditure and energy intake during dexamethasone therapy for chronic lung disease. Pediatr. Res. 1999;46:109–13.CrossRefGoogle Scholar
Sulkers, E. J., Van Goudoever, J. B., Leunisse, C. et al. Determination of carbon-labeled substrate oxidation rates. In Lafeber, H. N. ed. Fetal and Neonatal Physiological Measurements. Amsterdam: Excerpta Medica; 1991:297–304.Google Scholar
Kien, C. L.Isotopic dilution of CO2 as an estimate of CO2 production during substrate oxidation studies. Am. J. Physiol. 1989;257:E296–8.Google ScholarPubMed
Shew, S. B., Beckett, P. R., Keshen, T. H., Jahoor, F., Jaksic, T.Validation of a [13C] bicarbonate tracer technique to measure neonatal energy expenditure. Pediatr. Res. 2000;47:787–91.CrossRefGoogle Scholar
Aerde, J. E., Sauer, P. J. J., Pencharz, P. B.et al.The effect of energy intake and expenditure on the recovery of 13CO2 in the parenterally fed neonate during a 4-hour period primed constant infusion of NaH13CO3. Pediatr. Res. 1985;19:806–10.CrossRefGoogle Scholar
Adams, A. K., Nelson, R. A., Bell, E. F., Egoavil, C. A.Use of infrared thermographic calorimetry to determine energy expenditure in preterm infants. Am. J. Clin. Nutr. 2000;71:969–77.CrossRefGoogle ScholarPubMed
Chessex, P., Reichman, B., Verellen, G. J. E.Relation between heart rate and energy expenditure in the newborn. Pediatr. Res. 1981;15:1071–82.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×