Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T09:53:27.470Z Has data issue: false hasContentIssue false

40 - Nutritional assessment of the neonate

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
Robert Erick Ridout
Affiliation:
University of Colorado Health Sciences Center, The Children's Hospital, Denver, CO
Michael K. Georgieff
Affiliation:
Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Nutritional management decisions, as with most interventions in medicine, are meant to maximize benefit (growth and development) and minimize harm (toxicity). In order to achieve this goal, clinicians require tools that will allow careful monitoring of their patients' short- and longer-term responses to their nutritional management plan. Past and current research efforts have advanced the science of neonatal nutrition and helped guide present day nutrition strategies. This chapter will provide the clinician a review of those nutritional assessment tools that are currently readily available and also discuss future techniques. Given that the smallest preterm infants (those with birthweights < 1250 g) pose the greatest challenge to clinicians from nutritional management and assessment standpoints, the bulk of this chapter will address their specific needs. While this chapter will be divided into medical record review (maternal and neonatal), nutritional intake, laboratory measurements, and anthropometrics, in practice one should consider these concepts concomitantly when assessing the infant.

Medical record review

The foundation of a sound nutritional assessment plan starts with a comprehensive review of the patient's medical history. In the case of a neonate, the mother's medical history must also be considered. Figure 40.1 depicts the various maternal, nutritional, environmental, endocrinological, and fetal factors one must consider when reviewing the medical and nutritional history. Additional neonatal factors, not included in Figure 40.1, must also be taken into account.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kashyap, S., Heird, W. Protein requirements of low birthweight, very low birthweight, and small for gestational age infants. In Raiha, N. ed. Protein Metabolism during Infancy. New York: Raven Press; 1993:133–51.Google Scholar
Rubecz, I., Mestyan, J., Varga, P., Klujber, L.Energy metabolism, substrate utilization, and nitrogen balance in parenterally fed postoperative neonates and infants. The effect of glucose, glucose + amino acids, lipid + amino acids infused in isocaloric amounts. J. Pediatr. 1981;98:42–6.CrossRefGoogle ScholarPubMed
Zlotkin, S. H., Bryan, M. H., Anderson, G. H.Intravenous nitrogen and energy intakes required to duplicate in utero nitrogen accretion in prematurely born human infants. J. Pediatr. 1981;99:115–20.CrossRefGoogle ScholarPubMed
Duffy, B., Gunn, T., Collinge, J., Pencharz, P.The effect of varying protein quality and energy intake on the nitrogen metabolism of parenterally fed very low birthweight (less than 1600 g) infants. Pediatr. Res. 1981;15:1040–4.CrossRefGoogle Scholar
Toledo-Eppinga, L., Kalhan, S. C., Kulik, W., Jakobs, C., Lafeber, H. N.Relative kinetics of phenylalanine and leucine in low birth weight infants during nutrient administration. Pediatr. Res. 1996;40:41–6.CrossRefGoogle ScholarPubMed
Anderson, T. L., Muttart, C. R., Bieber, M. A., Nicholson, J. F., Heird, W. C.A controlled trial of glucose versus glucose and amino acids in premature infants. J. Pediatr. 1979;94:947–51.CrossRefGoogle ScholarPubMed
Yu, V. Y., James, B., Hendry, P., MacMahon, R. A.Total parenteral nutrition in very low birthweight infants: a controlled trial. Arch. Dis. Child. 1979;54:653–61.CrossRefGoogle ScholarPubMed
Saini, J., MacMahon, P., Morgan, J. B., Kovar, I. Z.Early parenteral feeding of amino acids. Arch. Dis. Child. 1989;64:1362–6.CrossRefGoogle ScholarPubMed
Lingen, R. A., Goudoever, J. B., Luijendijk, I. H., Wattimena, J. L., Sauer, P. J.Effects of early amino acid administration during total parenteral nutrition on protein metabolism in pre-term infants. Clin. Sci. (Lond). 1992;82:199–203.CrossRefGoogle ScholarPubMed
Rivera, A. Jr, Bell, E. F., Stegink, L. D., Ziegler, E. E.Plasma amino acid profiles during the first three days of life in infants with respiratory distress syndrome: effect of parenteral amino acid supplementation. J. Pediatr. 1989;115:465–8.CrossRefGoogle ScholarPubMed
Goudoever, J. B., Colen, T., Wattimena, J. L.et al.Immediate commencement of amino acid supplementation in preterm infants: effect on serum amino acid concentrations and protein kinetics on the first day of life. J. Pediatr. 1995;127:458–65.CrossRefGoogle ScholarPubMed
Thureen, P. J., Anderson, A. H., Baron, K. A.et al.Protein balance in the first week of life in ventilated neonates receiving parenteral nutrition. Am. J. Clin. Nutr. 1998;68:1128–35.CrossRefGoogle ScholarPubMed
Rivera, A. Jr, Bell, E. F., Bier, D. M.Effect of intravenous amino acids on protein metabolism of preterm infants during the first three days of life. Pediatr. Res. 1993;33:106–11.CrossRefGoogle ScholarPubMed
Denne, S. C., Karn, C. A., Ahlrichs, J. A.et al.Proteolysis and phenylalanine hydroxylation in response to parenteral nutrition in extremely premature and normal newborns. J. Clin. Invest. 1996;97:746–54.CrossRefGoogle ScholarPubMed
Ziegler, E. E. Protein requirements of preterm infants. In Fomon, S. J., Heird, W. C. eds. Energy and Protein Needs during Infancy. New York: Academic Press; 1986.Google Scholar
Ziegler, E. E.Protein in premature feeding. Nutrition 1994;10:69–71.Google ScholarPubMed
Cairns, P. A., Stalker, D. J.Carnitine supplementation of parenterally fed neonates. Cochrane Database Syst Rev. 2000;4:CD000950.Google Scholar
Kanarek, K. S., Williams, P. R., Blair, C.Concurrent administration of albumin with total parenteral nutrition in sick newborn infants. J. Parenter. Enteral Nutr. 1992;16:49–53.CrossRefGoogle ScholarPubMed
Ohls, R. K., Veerman, M. W., Christensen, R. D.Pharmacokinetics and effectiveness of recombinant erythropoietin administered to preterm infants by continuous infusion in total parenteral nutrition solution. J. Pediatr. 1996;128:518–23.CrossRefGoogle ScholarPubMed
Kumpf, V. J.Parenteral iron supplementation. Nutr. Clin. Pract. 1996;11:139–46.CrossRefGoogle ScholarPubMed
Go, W.Breastfeeding and the use of human milk. Pediatrics 1997;100:1035–9.Google Scholar
Ehrenkranz, R. A., Younes, N., Lemons, J. A.et al.Longitudinal growth of hospitalized very low birth weight infants. Pediatrics 1999;104:280–9.CrossRefGoogle ScholarPubMed
Baig, Mukarram Ali M., Habibullah, C. M., Swamy, M.et al.Studies on urea cycle enzyme levels in the human fetal liver at different gestational ages. Pediatr. Res. 1992;31:143–5.CrossRefGoogle Scholar
Raiha, N. C., Suihkonen, J.Development of urea-synthesizing enzymes in human liver. Acta Paediatr. Scand. 1968;57:121–4.CrossRefGoogle ScholarPubMed
Wheeler, R. A., Jackson, A. A., Griffiths, D. M.Urea production and recycling in neonates. J. Pediatr. Surg. 1991;26:575–7.CrossRefGoogle ScholarPubMed
Moran, B. J., Jackson, A. A.15N-urea metabolism in the functioning human colon: luminal hydrolysis and mucosal permeability. Gut 1990;31:454–7.CrossRefGoogle ScholarPubMed
Gresham, E. L., Simons, P. S., Battaglia, F. C.Maternal–fetal urea concentration difference in man: metabolic significance. J. Pediatr. 1971;79:809–11.CrossRefGoogle ScholarPubMed
Thureen, P. J., Melara, D., Fennessey, P. V., Hay, W. W. Jr.Effect of low versus high intravenous amino acid intake on very low birth weight infants in the early neonatal period. Pediatr. Res. 2003;53:24–32.CrossRefGoogle ScholarPubMed
Shiff, Y., Eliakim, A., Shainkin-Kestenbaum, R.et al.Measurements of bone turnover markers in premature infants. J. Pediatr. Endocrinol. Metab. 2001;14:389–95.CrossRefGoogle ScholarPubMed
Koo, W. W.Laboratory assessment of nutritional metabolic bone disease in infants. Clin. Biochem. 1996;29:429–38.CrossRefGoogle ScholarPubMed
Koo, W. W., Hammami, M., Hockman, E. M.Use of fan beam dual energy x-ray absorptiometry to measure body composition of piglets. J. Nutr. 2002;132:1380–3.CrossRefGoogle ScholarPubMed
Gutcher, G., Cutz, E.Complications of parenteral nutrition. Semin. Perinatol. 1986;10:196–207.Google ScholarPubMed
Clandinin, M. T., Aerde, J. E., Parrott, A.et al.Assessment of feeding different amounts of arachidonic and docosahexaenoic acids in preterm infant formulas on the fatty acid content of lipoprotein lipids. Acta Paediatr. 1999;88:890–6.CrossRefGoogle ScholarPubMed
Vanderhoof, J., Gross, S., Hegyi, T.et al.Evaluation of a long-chain polyunsaturated fatty acid supplemented formula on growth, tolerance, and plasma lipids in preterm infants up to 48 weeks postconceptional age. J. Pediatr. Gastroenterol. Nutr. 1999;29:318–26.CrossRefGoogle ScholarPubMed
Clandinin, M. T., Claerhout, D. L., Lien, E. L.Docosahexaenoic acid increases thyroid-stimulating hormone concentration in male and adrenal corticotrophic hormone concentration in female weanling rats. J. Nutr. 1998;128:1257–61.CrossRefGoogle ScholarPubMed
Clandinin, M. T., Aerde, J. E., Parrott, A.et al.Assessment of the efficacious dose of arachidonic and docosahexaenoic acids in preterm infant formulas: fatty acid composition of erythrocyte membrane lipids. Pediatr. Res. 1997;42:819–25.CrossRefGoogle ScholarPubMed
Marconi, A. M., Paolini, C., Buscaglia, M.et al.The impact of gestational age and fetal growth on the maternal-fetal glucose concentration difference. Obstet. Gynecol. 1996;87:937–42.CrossRefGoogle ScholarPubMed
Denne, S. C., Kalhan, S. C.Glucose carbon recycling and oxidation in human newborns. Am. J. Physiol. 1986;251:E71–7.Google ScholarPubMed
Biesalski, H. K., Nohr, D.Importance of vitamin-A for lung function and development. Mol. Aspects Med. 2003;24:431–40.CrossRefGoogle ScholarPubMed
Shenai, J. P., Kennedy, K. A., Chytil, F., Stahlman, M. T.Clinical trial of vitamin A supplementation in infants susceptible to bronchopulmonary dysplasia. J. Pediatr. 1987;111:269–77.CrossRefGoogle ScholarPubMed
Shenai, J. P., Chytil, F., Stahlman, M. T.Vitamin A status of neonates with bronchopulmonary dysplasia. Pediatr. Res. 1985;19:185–8.CrossRefGoogle ScholarPubMed
Darlow, B. A., Graham, P. J.Vitamin A supplementation for preventing morbidity and mortality in very low birthweight infants. Cochrane Database Syst. Rev. 2002;4:CD000501.Google Scholar
Shenai, J. P., Mellen, B. G., Chytil, F.Vitamin A status and postnatal dexamethasone treatment in bronchopulmonary dysplasia. Pediatrics 2000;106:547–53.CrossRefGoogle ScholarPubMed
Brion, L. P., Bell, E. F., Raghuveer, T. S.Vitamin E supplementation for prevention of morbidity and mortality in preterm infants. Cochrane Database Syst. Rev. 2003;4:CD003665.Google Scholar
Fish, W. H., Cohen, M., Franzek, D., Williams, J. M., Lemons, J. A.Effect of intramuscular vitamin E on mortality and intracranial hemorrhage in neonates of 1000 grams or less. Pediatrics 1990;85:578–84.Google ScholarPubMed
Johnson, L., Bowen, F. W. Jr, Abbasi, S.et al.Relationship of prolonged pharmacologic serum levels of vitamin E to incidence of sepsis and necrotizing enterocolitis in infants with birth weight 1,500 grams or less. Pediatrics 1985;75:619–38.Google ScholarPubMed
Brion, L. P., Bell, E. F., Raghuveer, T. S., Soghier, L.What is the appropriate intravenous dose of vitamin E for very-low-birth-weight infants?J. Perinatol. 2004;24:205–7.CrossRefGoogle ScholarPubMed
Scaglia, F., Longo, N.Primary and secondary alterations of neonatal carnitine metabolism. Semin. Perinatol. 1999;23:152–61.CrossRefGoogle ScholarPubMed
Shortland, G. J., Walter, J. H., Stroud, C.et al.Randomised controlled trial of L-carnitine as a nutritional supplement in preterm infants. Arch. Dis. Child Fetal Neonatal Ed. 1998;78:F185–8.CrossRefGoogle ScholarPubMed
Kumar, M., Kabra, N. S., Paes, B.Role of carnitine supplementation in apnea of prematurity: a systematic review. J. Perinatol. 2004;24:158–63.CrossRefGoogle ScholarPubMed
O'Donnell, J., Finer, N. N., Rich, W., Barshop, B. A., Barrington, K. J.Role of L-carnitine in apnea of prematurity: a randomized, controlled trial. Pediatrics 2002;109:622–6.CrossRefGoogle ScholarPubMed
Whitfield, J., Smith, T., Sollohub, H., Sweetman, L., Roe, C. R.Clinical effects of L-carnitine supplementation on apnea and growth in very low birth weight infants. Pediatrics 2003;111:477–82.CrossRefGoogle ScholarPubMed
Lozoff, B., Jimenez, E., Wolf, A. W.Long-term developmental outcome of infants with iron deficiency. N. Engl. J. Med. 1991;325:687–94.CrossRefGoogle ScholarPubMed
Lozoff, B., Wolf, A. W., Jimenez, E.Iron-deficiency anemia and infant development: effects of extended oral iron therapy. J. Pediatr. 1996;129:382–9.CrossRefGoogle ScholarPubMed
Lozoff, B., Jimenez, E., Hagen, J., Mollen, E., Wolf, A. W.Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics 2000;105:E51.CrossRefGoogle ScholarPubMed
Lozoff, B., Brittenham, G. M., Wolf, A. W.et al.Iron deficiency anemia and iron therapy effects on infant developmental test performance. Pediatrics 1987;79:981–95.Google ScholarPubMed
Deinard, A. S., List, A., Lindgren, B., Hunt, J. V., Chang, P. N.Cognitive deficits in iron-deficient and iron-deficient anemic children. J. Pediatr. 1986;108:681–9.CrossRefGoogle ScholarPubMed
Rao, R., Georgieff, M. K.Neonatal iron nutrition. Semin. Neonatol. 2001;6:425–35.CrossRefGoogle ScholarPubMed
Chockalingam, U. M., Murphy, E., Ophoven, J. C., Weisdorf, S. A., Georgieff, M. K.Cord transferrin and ferritin values in newborn infants at risk for prenatal uteroplacental insufficiency and chronic hypoxia. J. Pediatr. 1987;111:283–6.CrossRefGoogle ScholarPubMed
Georgieff, M. K., Landon, M. B., Mills, M. M.et al.Abnormal iron distribution in infants of diabetic mothers: spectrum and maternal antecedents. J. Pediatr. 1990;117:455–61.CrossRefGoogle ScholarPubMed
Morton, R. E., Nysenbaum, A., Price, K.Iron status in the first year of life. J. Pediatr. Gastroenterol. Nutr. 1988;7:707–12.CrossRefGoogle ScholarPubMed
Georgieff, M. K., Wewerka, S. W., Nelson, C. A., Deregnier, R. A.Iron status at 9 months of infants with low iron stores at birth. J. Pediatr. 2002;141:405–9.CrossRefGoogle ScholarPubMed
Ng, P. C., Lam, C. W., Lee, C. H.et al.Hepatic iron storage in very low birthweight infants after multiple blood transfusions. Arch. Dis. Child. Fetal Neonatal Ed. 2001;84:F101–5.CrossRefGoogle ScholarPubMed
Clemmons, D. R., , Klibanski A., Underwood, L. E.et al.Reduction of plasma immunoreactive somatomedin C during fasting in humans. J. Clin. Endocrinol. Metab. 1981;53:1247–50.CrossRefGoogle ScholarPubMed
Spiekerman, A. M.Proteins used in nutritional assessment. Clin. Lab. Med. 1993;13:353–69.Google ScholarPubMed
Church, J. M., Hill, G. L.Assessing the efficacy of intravenous nutrition in general surgical patients: dynamic nutritional assessment with plasma proteins. J. Parenter. Enteral Nutr. 1987;11:135–9.CrossRefGoogle ScholarPubMed
Reading, R. F., Ellis, R., Fleetwood, A.Plasma albumin and total protein in preterm babies from birth to eight weeks. Early Hum. Dev. 1990;22:81–7.CrossRefGoogle ScholarPubMed
Morton, A. G., Tavill, A. S.The role of iron in the regulation of hepatic transferrin synthesis. Br. J. Haematol. 1977;36:383–94.CrossRefGoogle ScholarPubMed
Georgieff, M. K., Amarnath, U. M., Murphy, E. L., Ophoven, J. J.Serum transferrin levels in the longitudinal assessment of protein-energy status in preterm infants. J. Pediatr. Gastroenterol. Nutr. 1989;8:234–9.CrossRefGoogle ScholarPubMed
Ritchie, R. F., Palomaki, G. E., Neveux, L. M., Navolotskaia, O.Reference distributions for the negative acute-phase proteins, albumin, transferrin, and transthyretin: a comparison of a large cohort to the world's literature. J. Clin. Lab. Anal. 1999;13:280–6.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Georgieff, M. K., Sasanow, S. R., Pereira, G. R.Serum transthyretin levels and protein intake as predictors of weight gain velocity in premature infants. J. Pediatr. Gastroenterol. Nutr. 1987;6:775–9.CrossRefGoogle ScholarPubMed
Georgieff, M. K., Chockalingam, U. M., Sasanow, S. R.et al.The effect of antenatal betamethasone on cord blood concentrations of retinol-binding protein, transthyretin, transferrin, retinol, and vitamin E. J. Pediatr. Gastroenterol. Nutr. 1988;7:713–7.CrossRefGoogle ScholarPubMed
Georgieff, M. K., Mammel, M. C., Mills, M. M.et al.Effect of postnatal steroid administration on serum vitamin A concentrations in newborn infants with respiratory compromise. J. Pediatr. 1989;114:301–4.CrossRefGoogle ScholarPubMed
Gil, A., Faus, M. J., Robles, R.et al.Urinary 3-methylhistidine derivative as indicator of nutrients intake in low-birth-weight infants. Horm. Metab. Res. 1984;16:667–70.CrossRefGoogle ScholarPubMed
Shew, S. B., Keshen, T. H., Glass, N. L., Jahoor, F., Jaksic, T.Ligation of a patent ductus arteriosus under fentanyl anesthesia improves protein metabolism in premature neonates. J. Pediatr. Surg. 2000;35:1277–81.CrossRefGoogle ScholarPubMed
Clemmons, D. R., Busby, W. H., Arai, T.et al.Role of insulin-like growth factor binding proteins in the control of IGF actions. Prog. Growth Factor Res. 1995;6:357–66.CrossRefGoogle ScholarPubMed
Firth, S. M., Baxter, R. C.Cellular actions of the insulin-like growth factor binding proteins. Endocr. Rev. 2002;23:824–54.CrossRefGoogle ScholarPubMed
Baxter, R. C.Insulin-like growth factor (IGF)-binding proteins: interactions with IGFs and intrinsic bioactivities. Am. J. Physiol. Endocrinol. Metab. 2000;278:E967–76.CrossRefGoogle ScholarPubMed
Hwa, V., Oh, Y., Rosenfeld, R. G.Insulin-like growth factor binding proteins: a proposed superfamily. Acta Paediatr. Suppl. 1999;88:37–45.CrossRefGoogle ScholarPubMed
Hwa, V., Oh, Y., Rosenfeld, R. G.The insulin-like growth factor-binding protein (insulin-like growth factor binding protein) superfamily. Endocr. Rev. 1999;20:761–87.Google ScholarPubMed
D'Costa, A. P., Ingram, R. L., Lenham, J. E., Sonntag, W. E.The regulation and mechanisms of action of growth hormone and insulin-like growth factor 1 during normal ageing. J. Reprod. Fertil. Suppl. 1993;46:87–98.Google ScholarPubMed
Ghigo, E., Arvat, E., Gianotti, L.et al.Human aging and the GH-IGF-I axis. J. Pediatr. Endocrinol. Metab. 1996;9:271–8.Google ScholarPubMed
Ghigo, E., Arvat, E., Gianotti, L.et al.Hypothalamic growth hormone-insulin-like growth factor-I axis across the human life span. J. Pediatr. Endocrinol. Metab. 2000;13 (Suppl. 6):1493–502.CrossRefGoogle ScholarPubMed
Rajaram, S., Carlson, S. E., Koo, W. W., , Rangachari A., Kelly, D. P.Insulin-like growth factor (IGF)-I and IGF-binding protein 3 during the first year in term and preterm infants. Pediatr. Res. 1995;37:581–5.CrossRefGoogle ScholarPubMed
Schutt, B. S., Weber, K., Elmlinger, M. W., Ranke, M. B.Measuring IGF-I, insulin-like growth factor binding protein-2 and insulin-like growth factor binding protein-3 from dried blood spots on filter paper is not only practical but also reliable. Growth Horm. IGF Res. 2003;13:75–80.CrossRefGoogle Scholar
Smith, W. J., Underwood, L. E., Keyes, L., Clemmons, D. R.Use of insulin-like growth factor I (IGF-I) and IGF-binding protein measurements to monitor feeding of premature infants. J. Clin. Endocrinol. Metab. 1997;82:3982–8.Google ScholarPubMed
Tovar, A. R., Halhali, A., Torres, N.Effect of nutritional rehabilitation of undernourished rats on serum insulin-like growth factor (IGF)-I and IGF-binding proteins. Rev. Invest. Clin. 1999;51:99–106.Google ScholarPubMed
Kita, K., Nagao, K., Taneda, N.et al.Insulin-like growth factor binding protein-2 gene expression can be regulated by diet manipulation in several tissues of young chickens. J. Nutr. 2002;132:145–51.CrossRefGoogle ScholarPubMed
Smith, W. J., Nam, T. J., Underwood, L. E.et al.Use of insulin-like growth factor-binding protein-2 (insulin-like growth factor binding protein-2), insulin-like growth factor binding protein-3, and IGF-I for assessing growth hormone status in short children. J. Clin. Endocrinol. Metab. 1993;77:1294–9.Google Scholar
Lemons, J. A., Bauer, C. R., Oh, W.et al.Very low birth weight outcomes of the National Institute of Child Health and Human Development Neonatal Research Network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics 2001;107:E1.CrossRefGoogle ScholarPubMed
Pauls, J., Bauer, K., Versmold, H.Postnatal body weight curves for infants below 1000 g birth weight receiving early enteral and parenteral nutrition. Eur. J. Pediatr. 1998;157:416–21.CrossRefGoogle Scholar
Alexander, G. R., Himes, J. H., Kaufman, R. B., Mor, J., , Kogan M.A United States national reference for fetal growth. Obstet. Gynecol. 1996;87:163–8.CrossRefGoogle ScholarPubMed
Clark, R. H., Thomas, P., Peabody, J.Extrauterine growth restriction remains a serious problem in prematurely born neonates. Pediatrics 2003;111:986–90.CrossRefGoogle ScholarPubMed
Gamarra, M. E., Schutz, Y., Catzeflis, C.et al.Composition of weight gain during the neonatal period and longitudinal growth follow-up in premature babies. Int. J. Vitam. Nutr. Res. 1987;57:339.Google ScholarPubMed
Chessex, P., Reichman, B., Verellen, G.et al.Metabolic consequences of intrauterine growth retardation in very low birthweight infants. Pediatr. Res. 1984;18:709–13.CrossRefGoogle ScholarPubMed
Putet, G., Senterre, J., Rigo, J., Salle, B.Nutrient balance, energy utilization, and composition of weight gain in very-low-birth-weight infants fed pooled human milk or a preterm formula. J. Pediatr. 1984;105:79–85.CrossRefGoogle ScholarPubMed
Hermansen, M. G., Hermansen, M. C.The influence of equipment weights on neonatal daily weight measurements. Neonatal. Netw. 1999;18:33–6.CrossRefGoogle ScholarPubMed
Epstein, H. T., Epstein, E. B.The relationship between brain weight and head circumference from birth to age 18 years. Am. J. Phys. Anthropol. 1978;48:471–3.CrossRefGoogle ScholarPubMed
Bartholomeusz, H. H., Courchesne, E., Karns, C. M.Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults. Neuropediatrics 2002;33:239–41.CrossRefGoogle ScholarPubMed
Lindley, A. A., Benson, J. E., Grimes, C., Cole, T. M. 3rd, Herman, A. A.The relationship in neonates between clinically measured head circumference and brain volume estimated from head calcitonin-scans. Early Hum. Dev. 1999;56:17–29.CrossRefGoogle Scholar
Gale, C. R., O'Callaghan, F. J., Godfrey, K. M., Law, C. M., Martyn, C. N.Critical periods of brain growth and cognitive function in children. Brain 2004;127:321–9.CrossRefGoogle ScholarPubMed
Georgieff, M. K., Hoffman, J. S., Pereira, G. R., Bernbaum, J. R., Hoffman-Williamson, M.Effect of neonatal caloric deprivation on head growth and 1-year developmental status in preterm infants. J. Pediatr. 1985;107:581–7.CrossRefGoogle ScholarPubMed
Corkins, M. R., Lewis, P., Cruse, W., Gupta, S., Fitzgerald, J.Accuracy of infant admission lengths. Pediatrics 2002;109:1108–11.CrossRefGoogle ScholarPubMed
Battaglia, F. C., Lubchenco, L. O.A practical classification of newborn infants by weight and gestational age. J. Pediatr. 1967;71:159–63.CrossRefGoogle ScholarPubMed
Lubchenco, L. O., Hansman, C., Boyd, E.Intrauterine growth in length and head circumference as estimated from live births at gestational ages from 26 to 42 weeks. Pediatrics 1966;37:403–8.Google ScholarPubMed
Lubchenco, L. O., Hansman, C., Dressler, M., Boyd, E.Intrauterine growth as estimated from liveborn birth-weight data at 24 to 42 weeks of gestation. Pediatrics 1963;32:793–800.Google ScholarPubMed
Fenton, T. R.A new growth chart for preterm babies: Babson and Benda's chart updated with recent data and a new format. bone mineral mass Pediatr. 2003;3:13.Google Scholar
Babson, S. G., Benda, G. I.Growth graphs for the clinical assessment of infants of varying gestational age. J. Pediatr. 1976;89:814–20.CrossRefGoogle ScholarPubMed
Sherry, B., Mei, Z., Grummer-Strawn, L., Dietz, W. H.Evaluation of and recommendations for growth references for very low birth weight (< or = 1500 grams) infants in the United States. Pediatrics 2003;111:750–8.CrossRefGoogle ScholarPubMed
Guo, S. S., Roche, A. F., Chumlea, W. C., Casey, P. H., Moore, W. M.Growth in weight, recumbent length, and head circumference for preterm low-birthweight infants during the first three years of life using gestation-adjusted ages. Early Hum. Dev. 1997;47:305–25.CrossRefGoogle ScholarPubMed
Gu, S. S., Wholihan, K., Roche, A. F., Chumlea, W. C., Casey, P. H.Weight-for-length reference data for preterm, low-birth-weight infants. Arch. Pediatr. Adolesc. Med. 1996;150:964–70.CrossRefGoogle Scholar
Dauncey, M. J., Gandy, G., Gairdner, D.Assessment of total body fat in infancy from skinfold thickness measurements. Arch. Dis. Child. 1977;52:223–7.CrossRefGoogle ScholarPubMed
Sheng, H. P., Muthappa, P. B., Wong, W. W., Schanler, R. J.Pitfalls of body fat assessments in premature infants by anthropometry. Biol. Neonate 1993;64:279–86.CrossRefGoogle ScholarPubMed
McGowan, A., Jordan, M., MacGregor, J. M. J.Skinfold thickness in neonates. Biol. Neonate 1974;25:66–84.CrossRefGoogle ScholarPubMed
Catalano, P. M., Thomas, A. J., Avallone, D. A., Amini, S. B.Anthropometric estimation of neonatal body composition. Am. J. Obstet. Gynecol. 1995;173:1176–81.CrossRefGoogle ScholarPubMed
Ziegler, E. E., O'Donnell, A. M., Nelson, S. E., Fomon, S. J.Body composition of the reference fetus. Growth 1976;40:329–41.Google ScholarPubMed
Fomon, S. J., Nelson, S. E.Body composition of the male and female reference infants. Annu. Rev. Nutr. 2002;22:1–17.CrossRefGoogle ScholarPubMed
Butte, N. F., Hopkinson, J. M., Wong, W. W., Smith, E. O., Ellis, K. J.Body composition during the first 2 years of life: an updated reference. Pediatr. Res. 2000;47:578–85.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Nutritional assessment of the neonate
    • By Robert Erick Ridout, University of Colorado Health Sciences Center, The Children's Hospital, Denver, CO, Michael K. Georgieff, Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.041
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Nutritional assessment of the neonate
    • By Robert Erick Ridout, University of Colorado Health Sciences Center, The Children's Hospital, Denver, CO, Michael K. Georgieff, Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.041
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Nutritional assessment of the neonate
    • By Robert Erick Ridout, University of Colorado Health Sciences Center, The Children's Hospital, Denver, CO, Michael K. Georgieff, Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.041
Available formats
×