Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T23:40:39.921Z Has data issue: false hasContentIssue false

37 - Nutrition in infants with congenital heart disease

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
James S. Barry
Affiliation:
University of Colorado Health Sciences Center, Denver, CO
Patti J. Thureen
Affiliation:
University of Colorado Health Sciences Center, Denver, CO
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Introduction

Congenital heart disease (CHD) occurs in 1% of newborns each year. It is the most common major congenital defect, comprising 13% of all major congenital defects. It is well known that infants with hemodynamically significant CHD have an increased rate of malnutrition and growth failure compared with healthy infants. In the early 1900s, William Osler described children with CHD as “rarely thriving and often displaying lethargy of body and mind.” Unfortunately, in the modern era, this description may still be accurate for some infants and children with CHD.

The neonatal period is a critical time for organ growth and development that is adversely affected by malnutrition associated with CHD. Many infants and children with CHD will need surgical correction of their congenital defect, with more than half requiring surgery during infancy. Although no data are available in infants undergoing cardiac surgery, data in adults indicate that improved preoperative nutritional status results in decreased postoperative morbidity. Therefore, it is imperative that early nutritional intervention is begun in infants with CHD, both to avoid long-term consequences of malnutrition during this period of rapid growth and development and to improve the metabolic response to surgery in those infants who require early surgical intervention.

There are few data regarding nutritional metabolism and growth in the neonatal period in infants with CHD.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hoffman, J. I.Incidence of congenital heart disease: I. Postnatal incidence. Pediatr. Cardiol. 1995;16:103–13.CrossRefGoogle ScholarPubMed
Holmes, L. B.Current concepts in genetics. Congenital malformations. N. Engl. J. Med. 1976;295:204–7.CrossRefGoogle ScholarPubMed
Naeye, R. L.Anatomic features of growth failure in congenital heart disease. Pediatrics 1967;39:433.Google ScholarPubMed
Rosenthal, A. Nutritional considerations in the prognosis and treatment of children with congenital heart disease. In Suskind, R. M., Lewinter-Suskind, L., eds. Textbook of Pediatric Nutrition. 2nd Edn. New York, NY: Raven Press; 1993:383–93.Google Scholar
Blackburn, G. L., Gibbons, G. W., Bothe, A.et al.Nutritional support in cardiac cachexia. J. Thorac. Cardiovasc. Surg. 1977;73:489–95.Google ScholarPubMed
Bayer, L. M., Robinson, S. J.Growth history of children with congenital heart disease. Size according to sex, age decade, surgical status, and diagnostic category. Am. J. Dis. Child. 1969;117:564–72.CrossRefGoogle Scholar
Huse, D. M., Feldt, R. H., Nelson, R. A., Novak, L. P.Infants with congenital heart disease. Food intake, body weight, and energy metabolism. Am. J. Dis. Child. 1975;129:65–9.CrossRefGoogle ScholarPubMed
Levy, R. J., Rosenthal, A., Fyler, D. C., Nadas, A. S.Birthweight of infants with congenital heart disease. Am. J. Dis. Child. 1978;132:249–54.Google ScholarPubMed
Rosenthal, G. L., Wilson, P. D., Permutt, T., Boughman, J. A., Ferencz, C.Birth weight and cardiovascular malformations: a population-based study. The Baltimore–Washington Infant Study. Am. J. Epidemiol. 1991;133:1273–81.CrossRefGoogle Scholar
Mehrizi, A., Drash, A.Growth disturbance in congenital heart disease. J. Pediatr. 1962;61:418–29.CrossRefGoogle ScholarPubMed
Varan, B., Tokel, K., Yilmaz, G.Malnutrition and growth failure in cyanotic and acyanotic congenital heart disease with and without pulmonary hypertension. Arch. Dis. Child. 1999;81:49–52.CrossRefGoogle ScholarPubMed
Rosenthal, G. L.Patterns of prenatal growth among infants with cardiovascular malformations: possible fetal hemodynamic effects. Am. J. Epidemiol. 1996;143:505–13.CrossRefGoogle ScholarPubMed
Rasanen, J., Wood, D. C., Weiner, S.et al.Role of the pulmonary circulation in the distribution of human fetal cardiac output during the second half of pregnancy. Circulation 1996;9:1068–73.CrossRefGoogle Scholar
Rudolph, A. M.Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ. Res. 1985;57:811–21.CrossRefGoogle ScholarPubMed
Friedman, A. H.Fahey, J. T.The transition from fetal to neonatal circulation: normal responses and implications for infants with heart disease. Semin. Perinatol. 1993;17:106–21.Google ScholarPubMed
Reber, K. M., Nankervis, C. A., Nowicki, P. T.Newborn intestinal circulation: physiology and pathophysiology. Clin. Perinatol. 2002;29:23–39.CrossRefGoogle ScholarPubMed
Stoddart, R. W., Widdowson, E. M.Changes in the organs of pigs in response to feeding for the first 24 h after birth. III. Fluorescence histochemistry of the carbohydrates of the intestine. Biol. Neonate. 1976;29:18–27.CrossRefGoogle ScholarPubMed
Edelstone, D. I., Holzman, I. R.Fetal intestinal oxygen consumption at various levels of oxygenation. Am. J. Physiol. 1982;242:H50–4.Google ScholarPubMed
Feldt, R. H., Strickler, G. B., Weidman, W. H.Growth of children with congenital heart disease. Am. J. Dis. Child. 1969;117:573–9.CrossRefGoogle ScholarPubMed
Linde, L. M., Dunn, O. J., Schireson, R., Rasof, B.Growth in children with congenital heart disease. J. Pediatr. 1967;70:413–19.CrossRefGoogle ScholarPubMed
Stocker, F. P., Wilkoff, W., Miettinen, O. S., Nadas, A. S.Oxygen consumption in infants with heart disease. Relationship to severity of congestive heart failure, relative weight, and caloric intake. J. Pediatr. 1972;80:43–51.CrossRefGoogle ScholarPubMed
Krauss, A. N., Auld, P. A.Metabolic rate of neonates with congenital heart disease. Arch. Dis. Child. 1975;50:539–41.CrossRefGoogle ScholarPubMed
Farrell, A. G., Schamberger, M. S., Olson, I. L., Leitch, C. A.Large left to right shunts and congestive failure increase total energy expenditure in infants with ventricular septal defects. Am. J. Cardiol. 2001;87:1128–31.CrossRefGoogle Scholar
Lees, M., Bristow, J. D., Griswold, H. E., Olmstead, R. W.Relative hypermetabolism in infants with congenital heart disease and undernutrition. Pediatrics 1965;36:183–91.Google ScholarPubMed
Kennaird, D. L.Oxygen consumption and evaporative water loss in infants with congenital heart disease. Arch. Dis. Child. 1976;51:34–41.CrossRefGoogle ScholarPubMed
Menon, G. K., Poskitt, E. M.Why does congenital heart disease cause failure to thrive?Arch. Dis. Child. 1985;60:1134–9.CrossRefGoogle ScholarPubMed
Jackson, M., Poskitt, E. M.The effects of high-energy feeding on energy balance and growth in infants with congenital heart disease and failure to thrive. Br. J. Nutr. 1991;65:131–43.CrossRefGoogle ScholarPubMed
Lees, M., Bristow, J. D., Griswold, H. E., Olmstead, R. W.Relative hypermetabolism in infants with congenital heart disease and undernutrition. Pediatrics 1965;36:183–91.Google ScholarPubMed
Leitch, C. A., Karn, C. A., Peppard, R. J., et al.Increased energy expenditure in infants with cyanotic congenital heart disease. J. Pediatr. 1998;133:755–60.CrossRefGoogle ScholarPubMed
Barton, J., Hindmarsh, P., Scrimgeour, C., Rennie, M., Preece, M.Energy expenditure in congenital heart disease. Arch. Dis. Child. 1994;70:5–9.CrossRefGoogle ScholarPubMed
Ackerman, I. L., Karn, C. A., Denne, S. C., Ensing, G. J., Leitch, C. A.Total but not resting energy expenditure is increased in infants with ventricular septal defects. Pediatrics 1998;102:1172–7.CrossRefGoogle Scholar
Hansen, S. R., Dorup, I.Energy and nutrient intakes in congenital heart disease. Acta. Paediatr. Scand. 1993;82:166–72.CrossRefGoogle ScholarPubMed
Krieger, I.Growth failure and congenital heart disease. Energy balance in infants. Am. J. Dis. Child. 1970;120:497–502.CrossRefGoogle ScholarPubMed
Schwarz, S. M., Gewitz, M. H., See, C. C., et al.Enteral nutrition in infants with congenital heart disease and growth failure. Pediatrics 1990;86:368–73.Google ScholarPubMed
Salzer, H. R., Haschke, F., Wimmer, M., Heil, M., Schilling, R.Growth and nutritional intake of infants with congenital heart disease. Pediatr. Cardiol. 1989;10:17–23.CrossRefGoogle ScholarPubMed
Strangeway, A., Fowler, R., Cunningham, K., Hamilton, J. R.Diet and growth in congenital heart disease. Pediatrics 1976;57:75–86.Google Scholar
Holt, D. W., Volans, G. N.Gastrointestinal symptoms of digoxin toxicity. Br. Med. J. 1977:2:704.CrossRefGoogle ScholarPubMed
Cavell, B.Gastric emptying in infants with congenital heart disease. Acta. Paediatr. Scand. 1981;70:517–20.CrossRefGoogle ScholarPubMed
Pittman, J. G., Cohen, P.The pathogenesis of cardiac cachexia. N. Engl. J. Med. 1964:271:403–9.CrossRefGoogle ScholarPubMed
Gervasio, M. R., Buchanan, C. N.Malnutrition in the pediatric cardiology patient. CCQ. 1985;8:49–56.Google ScholarPubMed
Babyn, P., Peled, N., Manson, D.et al.Radiologic features of gastric outlet obstruction in infants after long-term prostaglandin administration. Pediatr. Radiol. 1995;25:41–3.CrossRefGoogle ScholarPubMed
Peled, N., Dagan, O., Babyn, P.et al.Gastric-outlet obstruction induced by prostaglandin therapy in neonates. N. Engl. J. Med. 1992;327:505–10.CrossRefGoogle ScholarPubMed
Forchielli, M. L., McColl, R., Walker, W. A., Lo, C.Children with congenital heart disease; a nutrition challenge. Nutr. Rev. 1994;52:348–53.CrossRefGoogle ScholarPubMed
Sondheimer, J. M., Hamilton, J. R.Intestinal function in infants with severe congenital heart disease. J. Pediatr. 1978;92:572–8.CrossRefGoogle ScholarPubMed
Vaisman, N., Leigh, T., Voet, H.et al.Malabsorption in infants with congenital heart disease under diuretic treatment. Pediatr. Res. 1994;36:545–9.CrossRefGoogle ScholarPubMed
Yahav, J., Avigad, S., Frand, , M. Assessment of intestinal and cardiorespiratory function in children with congenital heart disease on high-caloric formulas. J. Pediatr. Gastroenterol. Nutr. 1985;4:778–85.CrossRefGoogle ScholarPubMed
Dyckner, T., Wester, P. O.Plasma and skeletal muscle electrolytes in patients on long-term diuretic therapy for arterial hypertension and/or congestive heart failure. Acta Med. Scand. 1987;222:231–6.CrossRefGoogle ScholarPubMed
Dorup, I., Clausen, T.Effects of potassium deficiency on growth and protein synthesis in skeletal muscle and the heart of rats. Br. J. Nutr. 1989;62:269–84.CrossRefGoogle ScholarPubMed
Dorup, I., Flyvberg, A., Everts, M. E., Clausen, T.Role of insulin-like growth factor-1 and growth inhibition induced by magnesium and zinc deficiencies. Br. J. Nutr. 1991;66:505–21.CrossRefGoogle ScholarPubMed
Feldman, A. M., Combes, A., Wagner, D., et al.The role of tumor necrosis factor in the pathophysiology of heart failure. J. Am. Coll. Cardiol. 2000;35:537–44.CrossRefGoogle ScholarPubMed
Bernstein, D., Jasper, J. R., Rosenfeld, R. G., Hintz, R. L.Decreased serum insulin-like growth factor-1 associated with growth failure in newborn lambs with experimental cyanotic heart disease. J. Clin. Invest. 1992;89:1128–32.CrossRefGoogle ScholarPubMed
Barton, J. S., Hindmarsh, P. C., Preece, M. A.Serum insulin-like growth factor 1 in congenital heart disease. Archiv. Dis. Child. 1996; 75:162–3.CrossRefGoogle ScholarPubMed
Sasaki, H., Baba, K., Nishida, Y., et al.Treatment of children with congenital heart disease and growth retardation with recombinant human growth hormone. Acta. Paediatr. Scand. 1996;85:251–3.CrossRefGoogle ScholarPubMed
Kliegman, R. M., Fanaroff, A. A.Neonatal necrotizing enterocolitis: a nine-year experience. Am. J. Dis. Child. 1981;135:603–7.CrossRefGoogle ScholarPubMed
Wiswell, T. E., Robertson, C. F., Jones, T. A., Tuttle, D. J.Necrotizing enterocolitis in full-term infants. A case control study. Am. J. Dis. Child. 1988;142:532–5.CrossRefGoogle ScholarPubMed
Polin, R. A., Pollack, P. F., Barlow, B.Necrotizing enterocolitis in term infants. J. Pediatr. 1976;89:460–2.CrossRefGoogle ScholarPubMed
Andrews, D. A., Sawin, R. S., Ledbetter, D. J., Schaller, R. T., Hatch, E. I.Necrotizing enterocolitis in term infants. Am. J. Surg. 1990;159:507–9.CrossRefGoogle Scholar
Martinez-Tallo, E., Claure, N., Bancalari, E.Necrotizing enterocolitis in full-term or near-term infants: risk factors. Biol. Neonate 1997;71:292–8.CrossRefGoogle ScholarPubMed
McElhinney, D. B., Hedrick, H. L., Bush, D. M., et al.Necrotizing enterocolitis in neonates with congenital heart disease: risk factors and outcomes. Pediatrics 2000;106:1080–7.CrossRefGoogle ScholarPubMed
Leung, M. P., Chau, K., Hui, P., et al.Necrotizing enterocolitis in neonates with symptomatic congenital heart disease. J. Pediatr. 1988;113:1044–6.CrossRefGoogle ScholarPubMed
Cheng, W., Leung, M. P., Tam, P. K. H.Surgical intervention in necrotizing enterocolitis with symptomatic congenital heart disease. Pediatr. Surg. Int. 1999;15:492–5.CrossRefGoogle ScholarPubMed
Lloyd, J.The etiology of gastrointestinal perforations in the newborn. J. Pediatr. Surg. 1969;4:77–84.CrossRefGoogle ScholarPubMed
Nowicki, P. T., Nankervis, C. A.The role of the circulation in the pathogenesis of necrotizing enterocolitis. Clin. Perinatol. 1994;21:219–34.CrossRefGoogle ScholarPubMed
Cooke, R. W., Meradji, M., Villenevue, V. H.Necrotising enterocolitis after cardiac catheterisation in infants. Arch. Dis. Child. 1980;55:66–8.CrossRefGoogle ScholarPubMed
Wong, S. N., Lo, R. N., Hui, P. W.Abnormal renal and splanchnic arterial Doppler pattern in premature babies with symptomatic patent ductus arteriosus. J. Ultrasound Med. 1990;9:125–30.CrossRefGoogle ScholarPubMed
Crissinger, K. D., Burney, D. L.Post-prandial hemodynamics and oxygenation in developing piglet intestine. Am. J. Physiol. 1991;260:G651–7.Google Scholar
Bolisetty, S., Lui, K., Oei, J., Wojtulewicz, J.A regional study of underlying congenital diseases in term infants with necrotizing enterocolitis. Acta. Paediatr. Scand. 2000; 89:1226–30.CrossRefGoogle ScholarPubMed
Unger, R., DeKleermaeker, M., Gidding, S. S., Christoffel, K. K.Abstract Calories count. Improved weight gain with dietary intervention in congenital heart disease. Am. J. Dis. Child. 1992;146:1078–84.CrossRefGoogle Scholar
Vanderhoof, J. A., Hofschire, P. J., Baluff, M. A., et al.Continuous enteral feedings. Am. J. Dis. Child. 1982;136:825–7.CrossRefGoogle ScholarPubMed
Hofner, G., Behrens, R., Koch, A., Singer, H., Hofbeck, M.Enteral nutritional support by percutaneous endoscopic gastrostomy in children with congenital heart disease. Pediatr. Cardiol. 2000;21:341–6.CrossRefGoogle ScholarPubMed
Ciotti, G., Holzer, R., Pozzi, M., Dalzell, M.Nutritional support via percutaneous endoscopic gastrostomy in children with cardiac disease experiencing difficulties with feeding. Cardiol. Young. 2002;12:537–41.CrossRefGoogle ScholarPubMed
American Academy of Pediatrics, Committee on Nutrition. Nutritional needs of preterm infants. In Kleinman, R., ed. Pediatric Nutrition Handbook. Elk Grove Village, IL: American Academy of Pediatrics; 1998: 55–87.Google Scholar
Fomon, S. J., Haschke, F., Ziegler, E. E., Nelson, S. E.Body composition of reference children from birth to 10 years. Am. J. Clin. Nutr. 1982;35:1169–75.CrossRefGoogle Scholar
Fomon, S. J., Ziegler, E. E.Nutritional management of infants with congenital heart disease. Am. Heart J. 1972;83;581–8.CrossRefGoogle ScholarPubMed
Committee on Nutrition, American Academy of Pediatrics. Commentary on breast-feeding and infant formulas, including proposed standard for formulas. Pediatrics 1976;57:278–85.
Jew, R., Oven, D., Kaufman, D.Osmolality of commonly used medications and formulas in the neonatal intensive care unit. Nutr. Clin. Pract. 1997;12:158–63.CrossRefGoogle Scholar
Fomon, S. J., Ziegler, E. E.Renal solute load and potential renal solute load in infancy. J. Pediatr. 1999;134:11–14.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×