Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T01:39:12.387Z Has data issue: false hasContentIssue false

23 - Enteral lipid digestion and absorption

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
Margit Hamosh
Affiliation:
Georgetown University Medical Center, Washington DC, 20057
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Fats are vital for normal growth and development, and are the main energy source of the newborn infant. In addition to providing 40%–50% of the total calories in human milk or formula, fats are an integral part of all cell membranes, provide fatty acids necessary for brain development, and are the sole vehicle for fat-soluble vitamins and hormones in milk. Furthermore, these energy-rich lipids can be stored in the body in nearly unlimited amounts, in contrast to the limited storage capacity for carbohydrates and proteins. Before birth, glucose is the major energy source for the fetus, with the fetal requirement for fatty acids supplied mainly as free fatty acids from the maternal circulation. After birth, fat is supplied chiefly in the form of milk or formula triglycerides.

Lipids are nonpolar or amphipathic substances that are insoluble in aqueous media (Figure 23.1). Absorption of fat permits the efficient assimilation of a great number of hydrophobic (fat-soluble) chemicals, some beneficial (such as the fat-soluble vitamins) and some detrimental (such as hydrophobic xenobiotics, drugs, and food additives).

Major lipids in infant nutrition

The major lipid classes are glycerides, phospholipids, sterols (cholesterol), and free fatty acids (Figure 23.1).

Glycerides are nonphosphorus-containing lipids that result from the esterification of glycerol and fatty acids (Figure 23.1). Triglycerides (neutral fat) are the most abundant lipids in animal tissue and serve as an important energy source. In triglycerides all three of the carbon molecules of glycerol are esterified with fatty acids.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hamosh, M. Fat needs for term and preterm infants. In Tsang, R. C., Nichols, B. L., eds. Nutrition during Infancy. Philadelphia, PA: Hanley & Belfus; 1988:133–59.Google Scholar
Hamosh, M.Lipid metabolism in premature infants. Biol. Neonat. 1987;52:50–64.CrossRefGoogle ScholarPubMed
Patton, J. S. Gastrointestinal lipid digestion. In Johnson, L. R., ed. Physiology of the Gastrointestinal Tract. New York, NY: Raven Press; 1981:1123–46.Google Scholar
Hamosh, M., Bitman, J., Wood, D. L.et al.Lipids in milk and the first steps in their digestion. Pediatrics 1985;75:146–50.Google ScholarPubMed
Mehta, N. R., Jones, J. B., Hamosh, M.Lipases in human milk: ontogeny and physiologic significance. J. Pediatr. Gastroenterol. Nutr. 1982;1:317–26.CrossRefGoogle ScholarPubMed
Hamosh, M. Physiological role of human milk lipase. In Lebenthal, E., ed. Gastrointestinal Development and Infant Nutrition. New York, NY: Raven Press; 1981:473–82.Google Scholar
Bitman, J., Wood, D. L., Hamosh, M.et al.Comparison of the lipid composition of breast milk from mothers of term and preterm infants. Am. J. Clin. Nutr. 1983;38:300–13.CrossRefGoogle ScholarPubMed
Ruegg, M., Blanc, B.The fat globule size distribution in human milk. Biochim. Biophys. Acta 1981;666:7–13.CrossRefGoogle ScholarPubMed
Luukkainen, P., Sato, M. K., Nikkari, T.Changes in fatty acid composition of preterm and term milk from 1 week to 6 months of lactation. J. Pediatr. Gastroenterol. Nutr. 1994;18:355–60.CrossRefGoogle ScholarPubMed
Raiten, D. J., Talbot, J. M., Naters, J. H.LSRO Report: Assessment of nutrient requirements for infant formulas. J. Nutr. 1998;128:20595–22938.Google Scholar
Hamosh, M., Salem, N. Jr.Long-chain polyunsaturated fatty acids. Biol. Neonate. 1998;74:106–20.CrossRefGoogle ScholarPubMed
Hamosh, M.Nutrition during lactation. Bibl. Nutr. Diet 1996;53:23–36.Google Scholar
Craig-Schmidt, M. C., Weete, J. D., Faircloth, S. A.et al.The effect of hydrogenated fat in the diet of nursing mothers on lipid composition and prostaglandin content of human milk. Am. J. Clin. Nutr. 1984;39:778–86.CrossRefGoogle ScholarPubMed
Chappell, J. E., Clandinin, M. T., Kearney-Volpe, C.Trans fatty acids in human milk lipids: influence of maternal diet and weight loss. Am. J. Clin. Nutr. 1985;42:49–56.CrossRefGoogle ScholarPubMed
Prentice, A., Jarjou, L. M., Drury, P. J.et al.Breastmilk fatty acids of rural Gambian mothers: effect of diet and maternal parity. J. Pediatr. Gastroenterol. Nutr. 1989;8:486–90.CrossRefGoogle Scholar
Hamosh, M., Bitman, J.Human milk in diseases: lipid composition. Lipids 1992;27:848–57.CrossRefGoogle ScholarPubMed
Bitman, J., Hamosh, M., Wood, D. L.et al.Lipid composition of milk from mothers with cystic fibrosis. Pediatrics 1987;80:927–32.Google ScholarPubMed
Bitman, J., Hamosh, M., Hamosh, P.et al.Milk composition and volume during the onset of lactation in a diabetic mother. Am. J. Clin. Nutr. 1989;50:1364–9.CrossRefGoogle Scholar
Wang, C. S., Illingworth, D. R.Lipid composition and lipolytic activities in milk from a patient with homozygous familial hypobetalipoproteinemia. Am. J. Clin. Nutr. 1987;45:730–6.CrossRefGoogle ScholarPubMed
Flores, C. A., Hing, S. A., Wells, M. A.et al.Rates of triolein absorption in suckling and adult rats. Am. J. Physiol. 1989;257:G823–8.Google ScholarPubMed
Hamosh, M. Gastric and lingual lipases. In Johnson, L. R., ed. Physiology of the Gastrointestinal Tract. 3rd edn. New York, NY: Raven Press; 1994:1239–53.Google Scholar
Hamosh, M.Digestion in the premature infant: the effects of human milk. Semin. Perinatol. 1994;18:485–94.Google ScholarPubMed
Hamosh, M. Preduodenal fat digestion. In Christophe, A. B., Vriese, S., eds. Fat Digestion and Absorption. Champaign, IL: AOCS Press; 2000:1–12.Google Scholar
Hamosh, M.Digestion in the neonate. Clin. Perinatol. 1996;23:191–209.CrossRefGoogle Scholar
Hamosh, M.Lingual and Gastric Lipase: their Role in Fat Digestion. Boca Raton, FL: CRC Press; 1990.Google Scholar
Watkins, J. B.Mechanism of fat absorption and the development of gastrointestinal function. Pediatr. Clin. N. Am. 1975;22:721–30.CrossRefGoogle Scholar
Hamosh, M., Klaeveman, H. L., Wolf, R. O.et al.Pharyngeal lipase and digestion of dietary triglycerides in man. J. Clin. Invest. 1975;55:908–13.CrossRefGoogle ScholarPubMed
Docherty, A. J. P., Bodmer, M. W., Angal, S.et al.Molecular cloning and nucleotide sequences of rat lingual lipase rDNA. Nucleic Acids Res. 1985;13:891–903.CrossRefGoogle Scholar
Bodmer, M. W., Angal, S., Yarraton, C. T.et al.Molecular cloning of a human gastric lipase and expression of the enzyme in yeast. Biochim. Biophys. Acta. 1987;902:237–44.CrossRefGoogle Scholar
Moreau, H., Gargouri, Y., Lecat, D.et al.Purification, characterization and kinetic properties of the rabbit gastric lipase. Biochim. Biophys. Acta. 1988;960:286–93.CrossRefGoogle ScholarPubMed
Bernback, S., Blackberg, L.Human gastric lipase. The N-terminal peptide is essential for lipid binding and lipase activity. Eur. J. Biochem. 1989;182:495–9.CrossRefGoogle Scholar
Abrams, C. K., Hamosh, M., Dutta, S. K.et al.Lingual lipase in cystic fibrosis. Quantitation of enzyme activity in the upper small intestine of patients with exocrine pancreatic insufficiency. J. Clin. Invest. 1984;73:374–82.CrossRefGoogle ScholarPubMed
Abrams, C. K., Hamosh, M., Dutta, S. K.Role of non-pancreatic lipolytic activity in exocrine pancreatic insufficiency. Gastroenterology 1987;92:125–9.CrossRefGoogle Scholar
Hamosh, M., Iverson, S. J., Kirk, C. L.et al.Milk lipids and neonatal fat digestion: relationships between fatty acid composition and endogenous and exogenous digestive enzymes and digestion of milk fat. World Rev. Nutr. Diet. 1994;75:86–91.CrossRefGoogle Scholar
Iverson, S. J., Kirk, C. L., Hamosh, M.et al.Milk lipid digestion in the neonatal dog: the combined actions of gastric and bile salt stimulated lipases. Biochim. Biophys. Acta 1991;1083:109–19.CrossRefGoogle ScholarPubMed
Hamosh, M., Hamosh, P. Development of secreted digestive enzymes. In Sanderson, I. R., Walker, W. A., eds. Development of the Gastrointestinal Tract. Hamilton, ONT: Decker Inc. Publ.; 2000:261–77.Google Scholar
Parfumi, Y., Lairon, D., Porte, Lechen P.et al.Mechanism of inhibition of triacylglycerol hydrolysis by human gastric lipase. J. Biol. Chem. 2002;277:28070–9.CrossRefGoogle Scholar
Cohen, M., Morgan, G. R. H., Hofmann, A. F.Lipolytic activity of human gastric and duodenal juice against medium and long-chain triglycerides. Gastroenterology 1971;60:1–15.Google ScholarPubMed
Plucinski, T. M., Hamosh, M., Hamosh, P.Fat digestion in the rat: role of lingual lipase. Am. J. Physiol. 1979;237:E541–7.Google ScholarPubMed
Reugg, M., Blanc, B.Structure and properties of the particulate constituents of human milk. A review. Food Microstructure 1982;1:25–40.Google Scholar
Bernback, S., Blackberg, L., Hernell, O.The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase and bile salt stimulated lipase. J. Clin. Invest. 1990;85:1221–6.CrossRefGoogle ScholarPubMed
Lindstrom, M. B., Sternby, B., Borgstrom, B.Concerted action of human carboxyl ester lipase and pancreatic lipase during lipid digestion in vitro: importance of the physio-chemical state of the substrate. Biochim. Biophys. Acta 1988;959:178–89.CrossRefGoogle Scholar
Lindstrom, M. B., Persson, J., Thurn, L.et al.Effect of pancreatic phospholipase A2 and gastric lipase on the action of pancreatic carboxylester lipase against lipid substrate in vitro. Biochim. Biophys. Acta 1991;1084:194–7.CrossRefGoogle ScholarPubMed
Armand, M., Hamosh, M., Mehta, N. R.et al.Effect of human milk or formula on gastric function and fat digestion in the premature infant. Pediatr. Res. 1996;40:439–47.CrossRefGoogle ScholarPubMed
Patton, J. S., Rigler, M. W., Liao, T. H.et al.Hydrolysis of triacylglycerol emulsions by lingual lipase – a microscopic study. Biochim. Biophys. Acta 1982;712:400–7.CrossRefGoogle ScholarPubMed
Patton, S., Borgstrom, B., Stemberger, B. H.et al.Release of membrane from milk fat globules by conjugated bile salts. J. Pediatr. Gastroenterol. Nutr. 1986;5:262–7.CrossRefGoogle ScholarPubMed
Armand, M., Hamosh, M., DiPalma, J. S.et al.Dietary fat modulates gastric lipase activity in healthy humans. Am. J. Clin. Nutr. 1995;61:74–80.CrossRefGoogle Scholar
Levine, G. M., Deren, J. J., Steiger, E.et al.Role of oral intake in maintenance of gut mass and disaccharidase activity. Gastroenterology 1974;67:975–82.Google Scholar
Rossi, T. M., Lee, P. C., Lebenthal, E.Total parenteral nutrition in infancy affects amylase and lipase but not trypsin secretion. Pediatr. Res. 1987;21:276A.CrossRefGoogle Scholar
Mehta, N. R., Liao, T. H., Hamosh, M.et al.Effect of total parenteral nutrition on lipase activity in the stomach of very low birth weight infants. Biol. Neonate. 1988;53:261–6.CrossRefGoogle ScholarPubMed
Hamosh, M., Scanlon, J. W., Ganot, D.et al.Fat digestion in the newborn: characterization of lipase in gastric aspirates of premature and term infants. J. Clin. Invest. 1981;67:838–46.CrossRefGoogle ScholarPubMed
Menard, D., Monfils, E., Tremblay, E.Ontogeny of human gastric lipase and pepsin activities. Gastroenterology 1995;108:1650–6.CrossRefGoogle ScholarPubMed
Moreau, H., Bernadac, A., Gargouri, Y.et al.Immunocytolocalization of human gastric lipase in chief cells of the fundic mucosa. Histochemistry 1989;91:419–23.CrossRefGoogle Scholar
Ellis, L. A., Hamosh, M.Bile salt stimulated lipase: comparative studies in ferret milk and lactating mammary gland. Lipids 1992;27:917–22.CrossRefGoogle ScholarPubMed
Sbarra, V., Mas, E.Henderson, T. R.et al.Digestive lipases of the newborn ferret: compensatory role of milk bile salt dependent lipase. Pediatr. Res. 1996;40:263–8.CrossRefGoogle ScholarPubMed
Hamosh, M., Henderson, T. R., Hamosh, P.Gastric lipase and pepsin activities in the developing ferret: nonparallel development of the two gastric digestive enzymes. J. Pediatr. Gastroenterol. Nutr. 1998;26:162–8.CrossRefGoogle ScholarPubMed
Zoppy, G., Andreotti, G., Payno-Ferrara, F.et al.Exocrine pancreatic function in premature and full-term neonates. Pediatr. Res. 1972;6:88–94.Google Scholar
Lebenthal, E., Lee, P. C.Development and functional response in human exocrine pancreas. Pediatrics 1980;66:556–60.Google ScholarPubMed
Lowe, M. E. The structure and function of pancreatic enzymes. In Johnson, L. R., ed. Physiology of the Gastrointestinal Tract. 3rd edn. New York, NY: Raven Press; 1994:1531–42.Google Scholar
Lowe, M. E.Structure and function of pancreatic lipase and colipase. Ann. Rev. Nutr. 1997;17:141–58.CrossRefGoogle ScholarPubMed
Erlanson-Albertson, C.Pancreatic colipase. Structural and physiological aspects. Biochim. Biophys. Acta 1992;1124:1–7.Google Scholar
Tilbeurgh, H., Sarda, L., Verger, R.et al.Structure of the pancreatic lipase-procolipase complex. Nature 1992;359:159–62.CrossRefGoogle ScholarPubMed
Lowe, M. E.Colipase stabilizes the lid domain of pancreatic triglyceride lipase. J. Biol. Chem. 1997;272:9–12.CrossRefGoogle ScholarPubMed
Brockerhoff, H.Substrate specificity of pancreatic lipase: influence of the structure of fatty acids on the reactivity of esters. Biochim. Biophys. Acta 1979;212:92–101.CrossRefGoogle Scholar
Savary, P.The action of pure pancreatic lipase upon esters of long-chain fatty acids and short-chain primary alcohols. Biochim. Biophys. Acta 1971;159:296–303.Google Scholar
Yang, L.-Y., Kuksis, A., Myher, J. J.Lipolysis of menhaden oil triacylglycerols and the corresponding fatty acid alkyl esters by pancreatic lipase in vitro: a reexamination. J. Lipid Res. 1990;31:137–48.Google ScholarPubMed
Lowe, M. E.Molecular mechanisms of rat and human pancreatic triglyceride lipase. J. Nutr. 1997;127:549–57.CrossRefGoogle Scholar
Boehm, G., Bierback, U., Senger, H.et al.Activities of lipase and trypsin in duodenal juice of infants small for gestational age. J. Pediatr. Gastroenterol. Nutr. 1991;12:324–7.CrossRefGoogle ScholarPubMed
Bokerman, M., Track, N. S., Creutzfelt, C., et al. Biochemical and ultrastructural changes in human pancreas during fetal development. In Kaiser, D., ed. Approaches to Cystic Fibrosis. Heilbronn, Germany: Thunert and Bofinger; 1983:221–9.Google Scholar
Payne, R. M., Sims, H. F., Jennens, M. L.et al.Rat pancreatic lipase and two related proteins: enzymatic properties and mRNA expression during development. Am. J. Physiol. 1994;266:G914–21.Google ScholarPubMed
Duan, R. D. Enzymatic aspects of fat digestion in the gastrointestinal tract. In Christophe, A. B., Vriese, S., eds. Fat Digestion and Absorption. Champaign, IL: AOCS Press; 2000:25–46.Google Scholar
Rausch, A., Rudiger, K., Vasiloudes, P.et al.Lipase synthesis in the rat pancreas is regulated by secretin. Pancreas 1986;1:522–8.CrossRefGoogle ScholarPubMed
Lombardo, D., Guy, O., Figarella, C.Purification and characterization of a carboxyl ester hydrolase from human pancreatic juice. Biochim. Biophys. Acta 1978;527:142–9.CrossRefGoogle ScholarPubMed
Roudani, S., Miralles, F., Margotat, A.et al.Bile salt dependent lipase transcripts in human fetal tissues. Biochim. Biophys. Acta 1995;1264:141–50.CrossRefGoogle ScholarPubMed
Howles, P. N., Carter, C. P., Hui, D. Y.Dietary free and esterified cholesterol absorption in cholesterol esterase (bile salt stimulated lipase) genetically targeted mice. J. Biol. Chem. 1996;271:7196–202.CrossRefGoogle Scholar
Patton, J. S., Warner, T. G., Benson, A. A.Partial characterization of the bile salt-dependent triacylglycerol lipase from the leopard shark pancreas. Biochim. Biophys. Acta 1977;486:322–30.CrossRefGoogle ScholarPubMed
Bradshaw, W. S., Rutter, W. J.Multiple pancreatic lipases. Tissue distribution and pattern of accumulation during embryological development. Biochemistry 1972;11:1517–28.CrossRefGoogle ScholarPubMed
Giller, T., Buchwald, P., Blum-Kaelin, D.et al.Two novel human pancreatic lipase related proteins, hPLRP1 and hPLRP2. J. Biol. Chem. 1992;267:16509–16.Google ScholarPubMed
Thirstrup, K., Verger, R., Carriere, F.Evidence for a pancreatic lipase subfamily with new kinetic properties. Biochemistry 1994;33:2748–56.CrossRefGoogle ScholarPubMed
Carriere, F., Thirstrup, K., Hjiorth, S.et al.Cloning of the classical guinea pig pancreatic lipase and comparison with the lipase related protein 2. FEBS Lett. 1994;338:63–8.CrossRefGoogle ScholarPubMed
Cygler, M., Schrog, J. D., Sussman, J. L.et al.Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases and related proteins. Protein Sci. 1993;2:366–82.CrossRefGoogle Scholar
Payne, R. M., Sims, H. F., Jennens, M. L.et al.Rat pancreatic lipase and two related proteins: enzymatic properties and mRNA expression during development. Am. J. Physiol. 1994;266:G914–21.Google ScholarPubMed
Wishart, M. J., Andrews, P. C., Nichols, R.et al.Identification and cloning of glycogen phosphorylase-3 from rat pancreatic acinar zymogen granules as a glycosylated membrane-associated lipase. J. Biol. Chem. 1993;268:10303–11.Google Scholar
Williamson, S., Finucane, E., Ellis, H.et al.Effect of heat treatment of human milk on absorption of nitrogen, fat, sodium, calcium, and phosphorus by preterm infants. Arch. Dis. Child. 1978;53:555–63.CrossRefGoogle ScholarPubMed
Alemi, B., Hamosh, M., Scanlon, J. W.et al.Fat digestion in very low birth weight infants: effect of addition of human milk to low birth weight formula. Pediatrics 1981;68:484–9.Google ScholarPubMed
Hamosh, M.Lingual and breast milk lipase. Adv. Pediatr. 1982;29:33–67.Google Scholar
Hamosh, M. Enzymes in human milk: their role in nutrient digestion, gastrointestinal function and nutrition in infancy. In Lebenthal, E., ed. Textbook of Gastroenterology and Nutrition in Infancy. 2nd edn. New York, NY: Raven Press;1989:121–34.Google Scholar
Hamosh, M. Enzymes in human milk. In Jensen, R. G., ed. Handbook of Milk Composition. San Diego, CA: Academic Press; 1995:388–427.Google Scholar
Marfan, A. B.Allaitment naturel et allaitment artificiel. Presse Med. 1901;9:13–19.Google Scholar
Lombardo, D.Bile salt dependent lipase: its pathophysiological implications. Biochim. Biophys. Acta 2001;1533:1–28.CrossRefGoogle ScholarPubMed
Lombardo, D., Fauvel, J., Guy, O.Studies on the substrate specificity of a carboxyl ester hydrolase from human pancreatic juice. I. Action on carboxyl esters, glycerides and phospholipids. Biochim. Biophys. Acta 1980;611:135–46.Google ScholarPubMed
Lombardo, D., Guy, O.Studies on the substrate specificity of a carboxyl ester hydrolase from human pancreatic juice. II. Action on cholesterol esters and lipid soluble vitamin esters. Biochim. Biophys. Acta 1980;611:147–55.CrossRefGoogle ScholarPubMed
Sbarra, V., Bruneau, N., Mas, E.et al.Molecular cloning of the bile salt dependent lipase of ferret lactating mammary gland: an overview of functional residues. Biochim. Biophys. Acta 1998;1393:80–9.CrossRefGoogle ScholarPubMed
Hamosh, M., Hamosh, P.Lipoprotein lipase, its physiological and clinical significance. Mol. Aspects Med. 1983;6:199–289.CrossRefGoogle ScholarPubMed
Freudenberg, E.Die Frauenmilch-lipase. Basel, Switzerland: Karger; 1953.Google Scholar
Freudenberg, E.A lipase in the milk of gorilla. Experientia 1966;22:317.CrossRefGoogle ScholarPubMed
Blackberg, L., Hernell, O., Olivecrona, T.et al.The bile salt stimulated lipase in human milk is a newcomer derived from a non-milk protein. FEBS Lett. 1980;112:51–4.CrossRefGoogle ScholarPubMed
Freed, L. M., Berkow, S. E., Hamosh, P.et al.Lipase in human milk: effect of gestational age and length of lactation on enzyme activity. J. Am. Coll. Nutr. 1989;8:143–50.CrossRefGoogle ScholarPubMed
Hamosh, M. Enzymes in human milk. In Howell, R. R., Morris, F. H., Pickering, L. K., eds. Human Milk in Infant Nutrition and Health. Springfield, IL: Charles C. Thomas; 1986:66–97.Google Scholar
Blackberg, L., Angquist, K. A., Hernell, O.Bile salt stimulated lipase in human milk: evidence for its synthesis in the lactating mammary gland. FEBS Lett. 1987;217:37–42.CrossRefGoogle ScholarPubMed
Jones, J. B., Mehta, N. R., Hamosh, M.α-Amylase in preterm human milk. J. Pediatr. Gastroenterol. Nutr. 1982;1:43–8.CrossRefGoogle ScholarPubMed
Pamblanco, M., Ten, A., Conin, J.Bile salt stimulated lipase activity in human colostrum from mothers of infants of different gestational age and birth weight. Acta Paediatr. Scand. 1987;76:328–31.CrossRefGoogle Scholar
Freed, L. M., York, C. M., Hamosh, P.et al.Bile salt stimulated lipase of human milk: characteristics of the enzyme in the milk of mothers of premature and full-term infants. J. Pediatr. Gastroenterol. Nutr. 1987;6:598–604.CrossRefGoogle ScholarPubMed
Freed, L. M., Neville, M. C., Hamosh, P.et al.Diurnal and within-feed variations in lipase activity and triglyceride content of human milk. J. Pediatr. Gastroenterol. Nutr. 1986;5:938–42.CrossRefGoogle ScholarPubMed
Berkow, S., Freed, L. M., Hamosh, M.et al.Lipase and lipids in human milk: effects of freeze thawing and storage. Pediatr. Res. 1984;18:1257–63.CrossRefGoogle Scholar
Hamosh, M., Henderson, T. R., Ellis, L. A.et al.Digestive enzymes in human milk: stability at suboptimal storage temperatures. J. Pediatr. Gastroenterol. Nutr. 1997;24:38–43.CrossRefGoogle ScholarPubMed
Wang, C. S., Hartstruck, J. A., Downs, D.Kinetics of acylglycerol sequential hydrolysis by human milk bile salt activated lipase and effect of taurocholate as fatty acid acceptor. Biochemistry 1988;27:4234–40.CrossRefGoogle ScholarPubMed
Hernell, O., Blackberg, L.Digestion of human milk lipids: physiological significance of sn-2 monoacylglycerol hydrolysis by bile salt-stimulated lipase. Pediatr. Res. 1982;16:882–5.CrossRefGoogle Scholar
Signer, E., Murphy, G. M., Edkins, S.et al.Role of bile salts in fat malabsorption of premature infants. Arch. Dis. Child. 1974;49:174–80.CrossRefGoogle ScholarPubMed
Frederikzon, B., Hernell, O., Blackberg, L.et al.Bile salt stimulated lipase in human milk: evidence of activity in vivo and of a role in the digestion of milk retinol esters. Pediatr. Res. 1978;12:1048–52.CrossRefGoogle Scholar
Hernell, O., Blackberg, L., Chen, O.Does the bile salt stimulated lipase of human milk have a role in the use of the milk long-chain polyunsaturated fatty acids?J. Pediatr. Gastroenterol. Nutr. 1993;16:425–31.CrossRefGoogle ScholarPubMed
Hernell, O., Gebre-Medhin, M., Olivecrona, T.Breast milk composition in Ethiopian and Swedish mothers. IV. Milk lipase. Am. J. Clin. Nutr. 1977;30:508–11.CrossRefGoogle Scholar
Ginder, J., Nwankwo, M. U., Omene, J. A.et al.Breast milk composition and bile salt stimulated lipase in well nourished and undernourished Nigerian mothers. Eur. J. Pediatr. 1987;146:184–6.CrossRefGoogle Scholar
Dupuy, P., Sauniere, J. F., Vis, H. L.et al.Change in bile salt dependent lipase in human breast milk during extended lactation. Lipids 1991;26:134–8.CrossRefGoogle ScholarPubMed
Hamosh, M.Fatty acids and monoglycerides: anti-infective agents produced during the digestion of milk fat by the newborn. Adv. Exp. Med. Biol. 1991;310:151–8.CrossRefGoogle Scholar
Tso, P. Intestinal lipid absorption. In Johnson, L. R., ed. Physiology of the Gastrointestinal Tract. New York, NY: Raven Press 1994:1867–907.Google Scholar
Levy, E.The 1991 Borden Award Lecture. Selected aspects of intraluminal and intracellular bases of intestinal fat absorption. Can. J. Physiol. Pharmacol. 1992;70:413–19.CrossRefGoogle Scholar
Hamilton, J. A.Fatty acid transport: difficult or easy?J. Lipid Res. 1998;29:467–81.Google Scholar
Besnard, P., Niot, I. Role of lipid binding proteins in intestinal absorption of long-chain fatty acids. In Christophe, A. B., Vries, S., eds. Fat Digestion and Absorption. Champaign, IL: AOCS Press; 2000:96–118.Google Scholar
Clandinian, M. T., Thomson, A. B. R. Intestinal absorption of lipids: a view toward the millennium. In Christophe, A. B., Vriese, S., eds. Fat Digestion and Absorption. Champaign, IL: AOCS Press; 2000:298–324.Google Scholar
Montagnani, M., Aldini, R., Roda, A.et al.New insights in the physiology and molecular basis of the intestinal bile acid absorption. Ital. J. Gastroenterol. Hepatol. 1998;30:435–40.Google ScholarPubMed
Little, G. M., Lester, R.Ontogenesis of intestinal bile salt absorption in the neonatal rat. Am. J. Physiol. 1980;239:G319–23.Google ScholarPubMed
Wong, M. H., Oelkers, P., Craddock, A. L.et al.Expression, cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J. Biol. Chem. 1994;269:1340–7.Google ScholarPubMed
Cristie, D. M., Dawson, P. A., Thevananther, S.et al.Comparative analysis of the ontogeny of a sodium-dependent bile acid transporter in rat kidney and ileum. Am. J. Physiol. 1996;271:G377–83.Google Scholar
Schoeller, C., Keelan, M., Mulvey, G.et al.Oleic acid uptake into rat and rabbit brush border membrane. Biochim. Biophys. Acta 1995;1236:51–64.CrossRefGoogle Scholar
Berk, P. D.How do long-chain fatty acids cross cell membrane?Proc. Soc. Exp. Biol. Med. 1996;212:1–4.CrossRefGoogle Scholar
McArthur, M. J., Atshaves, B. P., Frolov, A.et al.Cellular uptake and intracellular trafficking of long-chain fatty acids. J. Lipid Res. 1999;40:1371–83.Google ScholarPubMed
Bernlohr, D. A., Simpson, M. A., Hertzel, A. V.et al.Intracellular lipid-binding proteins and their genes. Ann. Rev. Nutr. 1997;17:277–303.CrossRefGoogle ScholarPubMed
Ribarik Coe, N., Bernlohr, D. A.Physiological properties of intracellular fatty acid binding proteins. Biochim. Biophys. Acta 1998;1391:287–306.Google Scholar
Boier, L. J., Socchettini, J. C., Knowler, W. C.et al.An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J. Clin. Invest. 1995;95:1281–7.CrossRefGoogle Scholar
Fujino, T., Kang, M.-J., Suzuki, H.et al.Molecular characterization and expression of rat acyl-CoA synthetase. J. Biol. Chem. 1996;271:16748–52.CrossRefGoogle ScholarPubMed
Knudsen, J., Jensen, M. V., Hansen, J. K.et al.Role of acyl-CoA binding protein in acyl CoA transport, metabolism and cell signaling. Mol. Cell Biochem. 1999;192:95–103.CrossRefGoogle Scholar
Frolov, A., Schroeder, F.Acyl coenzyme A binding protein. J. Biol. Chem. 1998;273:11049–55.CrossRefGoogle ScholarPubMed
Lim, M. C. M., Arbeeny, C., Berquist, K.et al.Cloning and regulation of hamster microsomal triglyceride transfer protein. J. Biol. Chem. 1994;269:29138–45.Google Scholar
Wettereau, J. R., Aggerbeck, L. P., Bouma, M. E.et al.Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science 1993;258:999–1001.CrossRefGoogle Scholar
Raabe, M., Veniant, M. M., Sullivan, M. A.et al.Analysis of the role of microsomal triglyceride transfer protein in liver of specific knockout mice. J. Clin. Invest. 1999;103:1287–98.CrossRefGoogle ScholarPubMed
Hamilton, R. L., Wong, J. S., Cham, C. M.et al.Chylomicron-sized lipid particles are formed in the setting of apolipoprotein B deficiency. J. Lipid Res. 1998;49:1543–57.Google Scholar
Patterson, A. P., Tennyson, G. E., Hoegg, J. M.et al.Ontogenic regulation of apolipoprotein B mRNA editing during human and rat development in vivo. Arterioscler. Thromb. 1992;12:468–73.CrossRefGoogle Scholar
Lehner, R., Kuksis, A.Biosynthesis of triacylglycerols. Prog. Lipid Res. 1996;35:169–201.CrossRefGoogle ScholarPubMed
Bezard, L., Bugant, M. Absorption of glycerides containing short, medium and long-chain fatty acids. In Kuksis, A., ed. Fat Absorption, v1. Boca Raton, FL: CRC Press; 1986:119–58.Google Scholar
Yang, L. Y., Kuksis, A., Myher, J. J.et al.Absorption of short chain triacylglycerides from butter and coconut oil. INFORM 1992;3:551.Google Scholar
Mansbach, C. M., Arnold, A., Garrett, M.Effect of chloroquine on intestinal lipid metabolism. Am. J. Physiol. 1987;253:G673–8.Google ScholarPubMed
Lehner, R., Cui, Z., Vance, D. E.Subcellular localization, developmental expression and characterization of a liver triacylglycerol hydrolase. Biochem. J. 1999;338:761–8.CrossRefGoogle ScholarPubMed
Spalinger, J. H., Seidman, E. G., Menard, D.et al.Endogenous lipase activity in Caco-2 cells. Biochim. Biophys. Acta 1998;1393:119–27.CrossRefGoogle ScholarPubMed
Kuksis, A. Biochemistry of glycerolipids and formation of chylomicrons. In Christophe, A. B., DeVriese, S., eds. Fat Digestion and Absorption. Champaign, IL: AOCS Press; 2000:119–81.Google Scholar
Greevenbroek, M. M. J., Bruin, T. W. A.Chylomicron synthesis by intestinal cells in vitro and in vivo. Atherosclerosis 1998;141:S9–16.CrossRefGoogle ScholarPubMed
Hoyoshi, H., Fujimoto, K., Cordelli, J. A.et al.Fat feeding increases size, but not number of chylomicrons produced by the small intestine. Am. J. Physiol. 1990;259: G709–19.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Enteral lipid digestion and absorption
    • By Margit Hamosh, Georgetown University Medical Center, Washington DC, 20057
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Enteral lipid digestion and absorption
    • By Margit Hamosh, Georgetown University Medical Center, Washington DC, 20057
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Enteral lipid digestion and absorption
    • By Margit Hamosh, Georgetown University Medical Center, Washington DC, 20057
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.024
Available formats
×