Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T04:00:26.764Z Has data issue: false hasContentIssue false

14 - Vitamins

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
Frank R. Greer
Affiliation:
University of Wisconsin, Madison, WI
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Vitamins are organic compounds required in trace amounts in the diet for the maintenance of normal growth and development. They are divided into fat-soluble and water-soluble groups. For term infants, the daily requirement is based on the content of human milk with the exceptions of vitamins D and K for which human milk is clearly deficient.

Newborn deficiencies of the fat-soluble vitamins A, D, E and K are well described. The fat-soluble vitamins require the presence of pancreatic enzymes and bile acids in the gut for their absorption. They are stored in the body and thus clinical deficiency may require some time to develop unless stores are inadequate at birth as in the preterm infant. On the other hand, excessive intakes accumulate in the body and have the potential for toxicity. All of the fat-soluble vitamins have been used in pharmacologic quantities in the newborn for treatment or prevention of disease processes, though clear indications for their use in this fashion remain areas of neonatal nutritional controversy. Vitamin D, unique to this family of compounds, functions more like a prohormone in that it can be synthesized in the skin and carried to other organs where the metabolic effects occur.

As for the water-soluble vitamins and vitamin-like cofactors, the same statements cannot be made. Requirements for term infants are based on the concentrations in human milk. Deficiency or toxicity is very rare in developed countries.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mangelsdorf, D. J., Umesono, K., Evans, R. M. The retinoid receptors. In Sporn, M. B., Roberts, A. B., Goodman, D. S., eds. The Retinoids. 2nd edn. Orlando, FL: Academic Press; 1994:319–50.Google Scholar
Blomhoff, R.Transport and metabolism of vitamin A. Nutr. Rev. 1994;52:513–23.Google ScholarPubMed
Dostalova, L.Correlation of the vitamin status between mother and newborn at delivery. Dev. Pharmacol. Ther. 1982;4:45–7.CrossRefGoogle Scholar
Hustead, V. A., Gutcher, G. R., Anderson, S. A.et al.Relationship of vitamin A (retinol) status to lung disease in the preterm infant. J. Pediatr. 1984;105:610–15.CrossRefGoogle ScholarPubMed
Tammela, O., Aitola, M., Ikonen, S.Cord blood concentrations of vitamin A in preterm infants. Early Hum. Dev. 1999;56:39–47.CrossRefGoogle ScholarPubMed
Lund, C. J., Kimble, M. S.Plasma vitamin A and carotene of the newborn infant with consideration of fetal-maternal relationships. Am. J. Obstet. Gynecol. 1943;46:207–21.CrossRefGoogle Scholar
Baker, H., Thompson, F. O., Langer, A. D.et al.Vitamin profile of 174 mothers and newborns at parturition. Am. J. Clin. Nutr. 1975;28:59–65.CrossRefGoogle ScholarPubMed
Baker, H., Thind, I. S., Frank, O.et al.Vitamin levels in low birth-weight newborn infants and their mothers. J. Obstet. Gynecol. 1977;129:521–4.CrossRefGoogle ScholarPubMed
, Vahlquist A., , Rask L., Peterson, P. A., Berg, T.The concentrations of retinol-binding protein, prealbumin, and transferrin in sera of newly delivered mothers and children of various ages. Scand. J. Clin. Lab. Invest. 1975;35:569–75.Google Scholar
, Jansson L., Nilsson, B.Serum retinol and retinol-binding protein in mothers and infants at delivery. Biol. Neonate. 1983;43:269–71.Google Scholar
Barnes, A. C.The placental metabolism of vitamin A. Am. J. Obstet. Gynecol. 1951;61:368–372.CrossRefGoogle ScholarPubMed
Ong, D. E. Absorption of vitamin A. In Blomhoff, R., ed. Vitamin A in Health and Disease. New York, NY: Marcel Dekker, Inc.; 1994:37–72.Google Scholar
Hugue, T.A survey of human liver reserves of retinol in London. Br. J. Nutr. 1982;47:165–172.CrossRefGoogle Scholar
Shenai, J. P., Chytil, F., Stahlman, M. T.Liver vitamin A reserves of very low birth weight neonates. Pediatr. Res. 1985;19:892–3.CrossRefGoogle ScholarPubMed
Olson, J. A., Gunning, D. B., Tilton, R. A.Liver concentrations of vitamin A and carotenoids, as a function of age and other parameters of American children who died of various causes. Am. J. Clin. Nutr. 1984;39:903–10.CrossRefGoogle ScholarPubMed
Soprano, D. R., Blaner, W. S. Plasma retinol-binding proteins. In Sporn, M. B., Roberts, A. B., Goodman, D. S., eds. The Retinoids. 2nd edn. Orlando, FL: Academic Press; 1994:257–82.Google Scholar
Shenai, J. P., Chytil, F., Jhaveri, A.et al.Plasma vitamin A and retinol binding protein in premature and term neonates. J. Pediatr. 1981;99:302–5.CrossRefGoogle ScholarPubMed
Thompson, S. Y., Kon, S. K., Mawson, E. H.The application of chromatography to the study of carotenoids of human and cow's milk. Biochem. J. 1942;36:17–18.Google Scholar
Canfield, L. M., Giuliano, A. R., Graver, E. J. Carotenoids, retinoids, and vitamin K in human milk. In Jensen, R. G., ed. Handbook of Milk Composition. San Diego, CA: Academic Press; 1995:693–705.Google Scholar
Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Manganese, Molybdenum, Silicon, Vanadium and Zinc. Washington, DC: National Academic Press; 2002.
Howard, L., Chu, R., Feman, S.et al.Vitamin A deficiency from long-term parenteral nutrition. Ann. Intern. Med. 1980;93:576–7.CrossRefGoogle ScholarPubMed
Silvers, K. M., Sluis, K. B., Darlow, B. A.et al.Limiting light-induced lipid peroxidation and vitamin loss in infant parenteral nutrition by adding multivitamin preparations to intralipid. Acta Paediatr. 2001;90:242–9.CrossRefGoogle ScholarPubMed
Shenai, J. P., Stahlman, M. T., Chytil, F.Vitamin A delivery from parenteral alimentation solution. J. Pediatr. 1981;99:661–3.CrossRefGoogle ScholarPubMed
Gillis, J., Jones, G., Pencharz, P.Delivery of vitamins A, D, and E in total parenteral nutrition solutions. J. Parenter. Enteral Nutr. 1983;7:11–14.CrossRefGoogle Scholar
Darlow, B. A., Graham, P. J. Vitamin A supplementation for preventing morbidity and mortality in very low birthweight infants (Cochrane Review). The Cochrane Library. Issue 2. Oxford, UK: Update Software; 2001.Google Scholar
Shenai, J. P., Kennedy, K. A., Chytil, F.et al.Clinical trial of vitamin A supplementation in infants susceptible to bronchopulmonary dysplasia. J. Pediatr. 1987;111:269–77.CrossRefGoogle ScholarPubMed
Shenai, J. P., Rush, M. G., Stahlman, M. T.et al.Plasma retinol binding protein response to vitamin A administration in infants susceptible to bronchopulmonary dysplasia. J. Pediatr. 1990;116:607–14.CrossRefGoogle ScholarPubMed
Pearson, E., Bose, C., Snidow, T.et al.Trial of vitamin A supplementation in very low birth weight infants at risk for bronchopulmonary dysplasia. J. Pediatr. 1992;121:420–7.CrossRefGoogle ScholarPubMed
Shenai, J. P., Rush, M. G., Stahlman, M. T., Chytil, F.Vitamin A supplementation and bronchopulmonary dysplasia – revisited. J. Pediatr. 1992;121:399–401.CrossRefGoogle ScholarPubMed
Robbins, S. T., Fletcher, A. B.Early vs. delayed vitamin A supplementation in very-low-birth-weight infants. J. Parenter. Enteral Nutr. 1993;17:220–5.CrossRefGoogle ScholarPubMed
Rush, M. G., Shenai, J. P., Parker, R. A.et al.Intramuscular versus enteral vitamin A supplementation in very low birth weight neonates. J. Pediatr. 1994;125:458–62.CrossRefGoogle ScholarPubMed
Schwartz, K. B., Cox, J. M., Clement, L.et al.Possible antioxidant effect of vitamin A supplementation in premature infants. J. Pediatr. Gastroenterol. Nutr. 1997;25:408–14.CrossRefGoogle Scholar
Bental, R. Y., Cooper, P. A., Cummins, R. R.et al.Vitamin A therapy-effects on the incidence of bronchopulmonary dysplasia. S. Afr. J. Food Sci. Nutr. 1994;6:141–5.Google Scholar
Paragaroufalis, C., Cairis, M., Pantazatou, E.et al.A trial of vitamin A supplementation in infants susceptible to bronchopulmonary dysplasia. Pediatr. Res. 1988;23:518A.Google Scholar
Tyson, J. E., Wright, L. L., Oh, W.et al.Vitamin A supplementation for extremely-low-birth-weight infants. N. Engl. J. Med. 1999;340:1962–8.CrossRefGoogle ScholarPubMed
Wardle, S. P., Hughes, A., Chen, S.et al.Randomized controlled trial of oral vitamin A supplementation in preterm infants to prevent chronic lung disease. Arch. Dis. Child. Fetal Neonatal Ed. 2001;84:F9-13.CrossRefGoogle ScholarPubMed
Olson, J. A.Serum levels of vitamin A and carotenoids as reflectors of nutritional status. J. Natl. Cancer. Inst. 1984;73:1439–44.Google ScholarPubMed
Meyer, K. A., Popper, H., Steigmann, F.et al.Comparison of vitamin A of liver biopsy specimens with plasma vitamin A in man. Proc. Soc. Exp. Biol. Med. 1942:49;589–91.CrossRefGoogle Scholar
Montreewasuwat, N., Olson, J. A.Serum and liver concentrations of vitamin A in Thai fetuses as a function of gestational age. Am. J. Clin. Nutr. 1979;32:601–6.CrossRefGoogle ScholarPubMed
Zachman, R. D., Samuels, D. P., Brand, J. M.et al.Use of the intramuscular relative dose response test to predict bronchopulmonary dysplasia in premature infants. Am. J. Clin. Nutr. 1996;63:123–9.CrossRefGoogle ScholarPubMed
Agaoestina, T., Humphrey, J. H., Taylor, G. A.et al.Safety of one 52-μmol (50,000 IU) oral dose of vitamin A administered to neonates. Bull. World Health Org. 1994;72:859–68.Google Scholar
Robens, J. R.Teratogenic effects of hypervitaminosis A in the hamster and guinea pig. Toxicol. Appl. Pharmacol. 1970;16;88–94.CrossRefGoogle ScholarPubMed
Geelan, J. C. A.Hypervitaminosis A-induced teratogenesis. CRC Crit. Rev. Toxicol. 1979;6:351–75.CrossRefGoogle Scholar
Shenefelt, R. E.Morphogenesis of malformations in hamsters caused by retinoic acid: relation to dose and stage at treatment. Teratology 1972;5:103–18.CrossRefGoogle ScholarPubMed
Rothman, K. J., Moore, L. L., Singer, M. R.et al.Teratogenicity of high vitamin A intake. N. Engl. J. Med. 1995;333:1369–73.CrossRefGoogle ScholarPubMed
Lammer, E. J., Chen, D. T., Hoar, R. M.et al.Retinoic acid embryopathy. N. Engl. J. Med. 1985;313:837–41.CrossRefGoogle ScholarPubMed
Benke, P. J.The isotretinoin teratogen syndrome. J. Am. Med. Assoc. 1984;251:3267–9.CrossRefGoogle ScholarPubMed
Lott, I. T., Bocian, M., Pribram, H. W.et al.Fetal hydrocephalus and ear anomalies associated with maternal use of isotretinoin. J. Pediatr. 1984;105:597–602.CrossRefGoogle ScholarPubMed
Burton, G. W., Traber, G. W.Vitamin E: antioxidant activity, biokinetics and bioavailability. Annu. Rev. Nutr. 1990;10:357–82.CrossRefGoogle ScholarPubMed
Dju, M. Y., Mason, K. I., Filer, L. I.Vitamin E (tocopherol) in human fetuses and placentae. Etudes Neonatales 1952;1:46–62.Google ScholarPubMed
Cruz, C. S., Wimberley, P. D., Johansen, K., Friis-Hansen, B.The effect of vitamin E on erythrocyte hemolysis and lipid peroxidation in newborn premature infants. Acta Paediatr. Scand. 1983;72:823–6.CrossRefGoogle ScholarPubMed
Mino, M., Nishimo, H.Fetal and maternal relationship in serum vitamin E level. J. Nutr. Sci. Vitaminol. 1973;19:475–82.CrossRefGoogle ScholarPubMed
Farrell, P. M. Vitamin E. In Shils, M., Young, V., ed. Modern Nutrition in Health and Disease. Philadelphia, PA: Lea & Febiger; 1988;340–54.Google Scholar
Farrell, P. M., Zachman, R. D., Gutcher, G. R. Fat soluble vitamins A, E, and K in the premature infant. In Tsang, R. C., ed. Vitamin and Mineral Requirements in Preterm Infants. New York, NY: Marcel Dekker; 1985;63–98.Google Scholar
Bieri, J. G., Farrell, P. M.Vitamin E. Vitam. Horm. 1976;34:31–75.CrossRefGoogle ScholarPubMed
Farrell, P. M., Bieri, J. G., Fratantoni, J. F.et al.The occurrence and effects of human vitamin E deficiency: a study in patients with cystic fibrosis. J. Clin. Invest. 1977;60:233–41.CrossRefGoogle ScholarPubMed
Losowky, M. S., Kelleher, J., Walker, B. E.Intake and absorption of tocopherol. Ann. NY Acad. Sci. 1972;203:212–22.CrossRefGoogle Scholar
Bieri, J. G., Evarts, R. P.Effect of plasma lipid levels and obesity on tissue stores of α-tocopherol. Proc. Soc. Exp. Biol. Med. 1975;149:500–2.CrossRefGoogle ScholarPubMed
Bieri, J. G.Kinetics of tissue α-tocopherol depletion and repletion. Ann. NY Acad. Sci. 1972;203:181–91.CrossRefGoogle Scholar
Traber, M. G., Burton, G. W., Hughes, L.et al.Discrimination between forms of vitamin E by humans with and without genetic abnormalities of lipoprotein metabolism. J. Lipid. Res. 1992;33:1171–82.Google ScholarPubMed
Traber, M. G., Sokol, R. J., Kohlschutter, A.et al.Impaired discrimination between stereoisomers of α-tocopherol in patients with familial isolated vitamin E deficiency. J. Lipid. Res. 1993;34:201–10.Google ScholarPubMed
Traber, M. G.Determinants of plasma vitamin E concentrations. Free Rad. Biol. Med. 1994;16:229–39.CrossRefGoogle ScholarPubMed
Arita, M., Sato, Y., Miyata, A.et al.Human alpha-tocopherol transfer protein: cDNA cloning, expression and chromosomal localization. Biochem. J. 1995;306:437–43.CrossRefGoogle ScholarPubMed
Doerflinger, N., Linder, C., Puahchi, K.et al.Ataxia with vitamin E deficiency: refinement of genetic localization and analysis of linkage disequilibrium by using new markers in 14 families. Am. J. Hum. Genet. 1995;56:1116–24.Google ScholarPubMed
Sokol, R. J., Kayden, H. J., Bettis, D. B.et al.Isolated vitamin E deficiency in the absence of fat malabsorption – familial and sporadic cases: characterization and investigation of causes. J. Lab. Clin. Med. 1988;111:548–59.Google ScholarPubMed
Hamida, Ben C., Doerflilnger, N., Belal, S.et al.Localization of Friedreich ataxia phenotype with selective vitamin E deficiency to chromosome 8q by homozygosity mapping. Nature Genet. 1993;5:195–200.CrossRefGoogle ScholarPubMed
Hamida, Ben M., Belal, S., Sirugo, G.et al.Friedreich's ataxia phenotype not linked to chromosome 9 and associated with selective autosomal recessive vitamin E deficiency in two inbred Tunisian families. Neurology 1993;43:2179–83.CrossRefGoogle Scholar
Ouahchi, K., Arita, M., Kayden, H.et al.Ataxia with isolated vitamin E deficiency is caused by mutations in the α-tocopherol transfer protein. Nature Genet. 1995;9:141–5.CrossRefGoogle ScholarPubMed
Lammi-Keefe, C. J. Vitamin D and E in human milk. In Jensen, R. G., ed. Handbook of Milk Composition. San Diego, CA: Academic Press; 1995:706–17.Google Scholar
Kobayaski, H., Kanno, C., Yamauchi, K.et al.Identification of alpha-, beta-, gamma-, and delta-tocopherols and their contents in human milk. Biochim. Biophys. Acta. 1975;380:282–90.Google Scholar
Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotinoids. Washington, DC: National Academy Press; 2000:186–283.
Huijbers, W. A. R., Schrijver, J., Speek, A. J.et al.Persistent low plasma vitamin E levels in premature infants surviving respiratory distress syndrome. Eur. J. Pediatr. 1986;145:170–1.CrossRefGoogle ScholarPubMed
Gross, S. J., Gabriel, E.Vitamin E status in preterm infants fed human milk or infant formula. J. Pediatr. 1985;106:634–40.CrossRefGoogle ScholarPubMed
Hittner, H. M., Speer, M. E., Rudolph, A. J.et al.Retrolental fibroplasia and vitamin E in the preterm infant – comparison of oral versus intramuscular administration. Pediatrics 1984;73:238–49.Google Scholar
Ronnholm, K. A. R., Dostalova, L., Simes, M. A.Vitamin E supplementation in very-low-birth-weight infants: Long-term follow-up at two different levels of vitamin E supplementation. Am. J. Clin. Nutr. 1989;49:121–6.CrossRefGoogle ScholarPubMed
Friedman, C. A., Wender, D. F., Temple, D. M.et al.Serum alpha-tocopherol concentrations in preterm infants receiving less than 25 mg kg−1 day−1 alpha-tocopherol acetate supplements. Dev. Pharmacol. Ther. 1988;11:273–80.CrossRefGoogle Scholar
Laro, M. R., Wojewardine, K., Wald, N. J.Is routine vitamin E administration justified in very low-birthweight infants?Dev. Med. Child. Neurol. 1990;32:442–50.Google Scholar
Farrell, P. M.Vitamin E deficiency in premature infants. J. Pediatr. 1979;95:869–72.CrossRefGoogle ScholarPubMed
Banagale, R. C., Bray, J. J., Erenberg, A. P.Serum free tocopherol levels in premature infants (PI) receiving total parenteral nutrition (total parental nutrition). Pediatr. Res. 1981;15:492A.CrossRefGoogle Scholar
Phillips, B., Franck, L. S., Greene, H. L.Vitamin E levels in premature infants during and after intravenous multivitamin supplementation. Pediatrics 1987;80:680–3.Google ScholarPubMed
Gutcher, G. R., Farrell, P. J. M.Early intravenous correction of vitamin E deficiency in premature infants. J. Pediatr. Gastroenterol. Nutr. 1985;4:604–9.CrossRefGoogle ScholarPubMed
Greene, H. L., Hambridge, K. M., Schanler, R., Tsang, R. C.Guidelines for the use of vitamins, trace elements, calcium, magnesium, and phosphorus in infants and children receiving total parenteral nutrition: report of the Subcommittee on Pediatric Parenteral Nutrient Requirements from the Committee on Clinical Practice Issues of The American Society for Clinical Nutrition. Am. J. Clin. Nutr. 1988;48:1324–42.CrossRefGoogle Scholar
American Academy of Pediatrics, Committee on Nutrition. Nutritional Needs of Preterm Infant. Pediatric Nutrition Handbook. 5th edn. AAP; 2003.
Oski, F. A., Barness, L. A.Vitamin E deficiency: a previously unrecognized cause of hemolytic anemia in the premature infant. J. Pediatr. 1967;70:211–20.CrossRefGoogle Scholar
Horwitt, M. K., Bailey, P.Cerebellar pathology in an infant resembling chick nutritional encephalomalacia. Arch. Neural Psychiatr. 1959;95:869–72.Google Scholar
Ehrenkranz, R. A., Bonta, B. W., Ablow, R. C.et al.Amelioration of bronchopulmonary dysplasia after vitamin E administration: a preliminary report. N. Engl. J. Med. 1978;229:564–9.CrossRefGoogle Scholar
Johnson, L., Schaffer, D., Quinn, G.et al.Vitamin E supplementation and the retinopathy of prematurity. Ann. NY Acad. Sci. 1982;393:473–84.CrossRefGoogle ScholarPubMed
Hittner, H. M., Godio, L. B., Rudolph, A. J.et al.Retrolental fibroplasia: efficacy of vitamin E in a double-blind clinical study of preterm infants. N. Engl. J. Med. 1981;305:1365–71.CrossRefGoogle Scholar
Hittner, H. M., Godio, L. B., Speer, M. I.et al.Retrolental fibroplasia: Further clinical evidence and ultrastructural support for efficacy of vitamin E in the preterm infant. Pediatrics 1983;71:423–32.Google ScholarPubMed
Kretzer, F. L., Hittner, J. M., Johnson, A. T.et al.Vitamin E and retrolental fibroplasia: ultrastructural support of clinical efficacy. Ann. NY Acad. Sci. 1982;393:145–64.CrossRefGoogle ScholarPubMed
Sokol, R. J.Vitamin E deficiency and neurologic disease. Am. Rev. Nutr. 1988;8:351–73.CrossRefGoogle ScholarPubMed
Chiswick, M. L., Johnson, M., Woodhall, C.et al.Protective effect of vitamin E (dl-alpha-tocopherol) against intraventricular hemorrhage in premature babies. Br. Med. J. 1983;287:81–4.CrossRefGoogle ScholarPubMed
Speer, M. E., Blifeld, C., Rudolph, A. J.et al.Intraventricular hemorrhage and vitamin E in the very low-birth-weight infant: evidence of efficacy of early intramuscular vitamin E administration. Pediatrics 1984;74:1107–12.Google ScholarPubMed
Ehrenkranz, R. A., Ablow, R. C., Warshaw, J. B.Effect of vitamin E on the development of oxygen-induced lung injury in neonates. Ann. NY Acad. Sci. 1982;393:452–65.CrossRefGoogle ScholarPubMed
Phelps, D. L., Rosenbaum, A. L., Isenberg, S. J.et al.Tocopherol efficacy and safety for preventing retinopathy of prematurity: a randomized, controlled, double-masked trial. Pediatrics 1987;79:489–500.Google ScholarPubMed
Bell, E. F. Prevention of bronchopulmonary dysplasia: vitamin E and other antioxidants. In Farrell, P. M., Tausing, L. M., ed. Bronchopulmonary Dysplasia and Related Chronic Respiratory Disorders. Report of the Ninetieth Ross Conference on Pediatric Research. Columbus, OH: Ross Laboratories; 1986;77–82.Google Scholar
Gutcher, G. R., Raynor, W. J., Farrell, P. M.An evaluation of vitamin E status in premature infants. Am. J. Clin. Nutr. 1984;40:1078–89.CrossRefGoogle ScholarPubMed
Slagle, T. A., Gross, S. J. Vitamin E. In Tsang, R. C., Nichols, B. L., ed. Nutrition during Infancy. Philadelphia, PA: Hanley & Belfus; 1988:277–88.Google Scholar
Greene, H. L., Moore, M. E. C., Phillips, B.et al.Evaluation of a pediatric multiple vitamin preparation for total parenteral nutrition. II. Blood levels of vitamins A, D, and E. Pediatrics 1986;77:539–47.Google Scholar
Bougle, D., Boutroy, M. J., Heng, J.et al.Plasma kinetics of parenteral tocopherol in premature infants. Dev. Pharmacol. Ther. 1986;9:310–16.CrossRefGoogle ScholarPubMed
Knight, M. E., Roberts, R. J.Disposition of intravenously administered pharmacologic doses of vitamin E in newborn rabbits. J. Pediatr. 1986;108:145–50.CrossRefGoogle ScholarPubMed
Balistreri, W. F., Farrell, M. K., Bove, K. E.Lessons from the E-ferol tragedy. Pediatrics 1986;78:503–6.Google ScholarPubMed
Melhorn, D. K., Gross, S.Vitamin E-dependent anemia in the premature infant. II. Relationships between gestational age and absorption of vitamin E. Pediatrics 1971;79:581–8.CrossRefGoogle ScholarPubMed
Gutcher, G. R., Lax, A. M., Farrell, P. M.Tocopherol isomers in intravenous lipid emulsions and resultant plasma concentrations. J. Parenter. Enteral Nutr. 1984;8:269–73.CrossRefGoogle ScholarPubMed
Farrell, P. M. Vitamin E. A comprehensive treatise. In Machlin, L. J., ed. Human Health and Disease. New York, NY: Marcel Dekker; 1980:519–620.Google Scholar
Gross, S., Melhorn, D. K.Vitamin E, red cell lipids and red cell stability in prematurity. Ann. NY Acad. Sci. 1972;203:141–62.CrossRefGoogle ScholarPubMed
Owens, W. C., Owens, E. U.Retrolental fibroplasia in premature infants. Am. J. Ophthalmol. 1949;32:1631–7.CrossRefGoogle ScholarPubMed
Taju, T. N. K., Langenberg, P., Bhutani, V., Quinn, G. E.Vitamin E prophylaxis to reduce retinopathy of prematurity: a reappraisal of published trials. J. Pediatr. 1997;131:844–50.Google Scholar
Milner, R. A., Watts, J. L., Paes, B., Zipursky, A. RLF in < 1500 gram neonates. Part of a randomized clinical trial of the effectiveness of vitamin E. In Retinopathy of Prematurity Conference. Columbus, OH: Ross Laboratories; 1981:703–16.Google Scholar
Finer, N. N., Schindler, R. F., Grant, G., Hill, G. B., Peters, K. L.Effect of intramuscular vitamin E on frequency and severity of retrolental fibroplasia. A controlled trial. Lancet 1982;1:1087–91.CrossRefGoogle ScholarPubMed
Puklin, J. E., Simon, R. M., Ehrenkranz, R. A.Influence on retrolental fibroplasia of intramuscular vitamin E administration during respiratory distress syndrome. Ophthalmology 1982;89;96–103.CrossRefGoogle ScholarPubMed
Saldanha, R. L., Cepeda, E. E., Poland, R. L.The effect of vitamin E prophylaxis on the incidence and severity of bronchopulmonary dysplasia. J. Pediatr. 1982;101:89–93.Google ScholarPubMed
Watts, J. L., Milner, R., Zipursky, A.et al.Failure of supplementation with vitamin E to prevent bronchopulmonary dysplasia in infants <1500 g birthweight. Eur. Respir. J. 1991;4:188–90.Google Scholar
Chiswick, M., Gladman, G., Sinba, S.et al.Vitamin E supplementation and periventricular hemorrhage in the newborn. Am. J. Clin. Nutr. 1991;53:370S–2S.CrossRefGoogle ScholarPubMed
Fish, W. H., Cohen, M., Franzek, E.et al.Effect of intramuscular vitamin E on mortality and intracranial hemorrhage in neonates of 1,000 grams or less. Pediatrics 1990;85;578–84.Google ScholarPubMed
Farrell, P. M., Levine, S. L., Murphy, M. D.et al.Plasma tocopherol levels and tocopherol-lipid relationships in a normal population of children as compared with healthy adults. Am. J. Clin. Nutr. 1978;31:1720–6.CrossRefGoogle Scholar
Horwitt, M. K., Harvey, C. C., Dahm, C. H. Jret al.Relationship between tocopherol and serum lipid levels for determination of nutritional adequacy. Ann. NY Acad. Sci. 1972;203:223–6.CrossRefGoogle ScholarPubMed
Sokol, R. J., Heubi, J. E., Iannacone, S. T.et al.Vitamin E deficiency with normal serum vitamin E concentrations in children with chronic cholestasis. N. Engl. J. Med. 1984;310:1209–12.CrossRefGoogle ScholarPubMed
Zoeren-Grobben, D., Jacobs, N. J. M., Houdkamp, E.et al.Vitamin E status in preterm infants: assessment by plasma and erythrocyte vitamin E-lipid ratios and hemolysis tests. J. Pediatr. Gastro. Nutr. 1998;26:73–9.CrossRefGoogle ScholarPubMed
Greer, F. R., Zachman, R. D. Neonatal vitamin metabolism. Fat soluble. In Cowett, R. M., ed. Principles of Perinatal-Neonatal Metabolism. New York, NY: Springer; 1998;943–75.CrossRefGoogle Scholar
Suttie, J. W.Synthesis of vitamin K-dependent proteins. FASEB J. 1993;7:445–52.CrossRefGoogle ScholarPubMed
Dowd, P., Ham, S. W., Naganathan, S., Hershline, R.The mechanism of action of vitamin K. Ann. Rev. Nutr. 1995;15:419–40.CrossRefGoogle ScholarPubMed
Fujita, K., Kakuya, F., Ito, S.Vitamin K1 and K2 status and fecal flora in breast-fed and formula fed 1-month-old infants. Eur. J. Pediatr. 1993;152:852–5.CrossRefGoogle ScholarPubMed
Greer, F. R., Mummah-Schendel, L. L., Marshall, S., Suttie, J. W.Vitamin K1 (phylloquinone) and vitamin K2 (menaquinone) status in newborn during the first week of life. Pediatrics 1988;81:137–40.Google ScholarPubMed
Kayata, S., Kindberg, C., Greer, F. R.et al.Vitamin K1 and K2 in infant human liver. J. Pediatr. Gastroenterol. Nutr. 1989;8:304–7.CrossRefGoogle ScholarPubMed
Suttie, J. W.The importance of menaquinones in human nutrition. Annu. Rev. Nutr. 1995;15:399–417.CrossRefGoogle ScholarPubMed
Pietersma-deBruyn, A. L. J. M., Haard, P. M. M.Vitamin K1 in the newborn. Clin. Chim. Acta. 1985;150:95–101.Google Scholar
Shearer, M. J., Barkhan, P., Rahim, S.et al.Plasma vitamin K1 in mothers and their newborn babies. Lancet 1982;2:460–3.CrossRefGoogle ScholarPubMed
Mandelbrot, L., Guillaumont, M., Leclercq, M.et al.Placental transfer of vitamin K1 and its implication in fetal hemostasis. Thromb. Haemost. 1988;60:39–43.Google Scholar
Greer, F. R., Marshall, S. P., Severson, R. R.et al.A new mixed-micellar preparation for oral vitamin K prophylaxis. Comparisons with an intramuscular formulation in breast-fed infants. Arch. Dis. Child. 1998;79:300–5.CrossRefGoogle Scholar
Blomstrand, R., Forsgren, L.Vitamin K13H in man: its intestinal absorption and transport in the thoracic duct lymph. Int. Z. Vitam. Forschung. 1968;38:45–64.Google Scholar
Sann, L., Leclercq, M., Guillaumont, M.et al.Serum vitamin K1 concentrations after oral administration of vitamin K1 in low birth weight infants. J. Pediatr. 1985;107:608–11.CrossRefGoogle ScholarPubMed
Thijssen, J. W., Drittij-Reijnders, M. J., Fischer, M. A. J. G.Phylloquinone and menaquinone-4 distribution in rats: synthesis rather than uptake determines menaquinone-4 organ concentrations. J. Nutr. 1996;126:537–43.CrossRefGoogle ScholarPubMed
Hodges, S. J., Bejui, J., Leclercq, M.et al.Detection and measurement of vitamins K1 and K2 in human cortical and trabecular bone. J. Bone Miner. Res. 1993;8:1005–8.CrossRefGoogle ScholarPubMed
Bjornsson, T. D., Meffin, P. G., Swezey, S. E. et al. Disposition and turnover of vitamin K1 in man. In Suttie, J. W., ed. Vitamin K Metabolism and Vitamin K-Dependent Proteins. Baltimore, MD: University Park Press; 1980:328–32.Google Scholar
Bolisetty, S., Gupta, G. G., Salonikas, C., Naidoo, D.Vitamin K in preterm breastmilk with maternal supplementation. Acta Paediatr. 1998; 87:960–2.CrossRefGoogle ScholarPubMed
Greer, F. R., Marshall, S., Suttie, J. W.Improving the vitamin K status of breast-feeding infants with maternal vitamin K supplements. Pediatrics 1997;99:88–92.CrossRefGoogle Scholar
Kumar, D., Greer, F. R., Super, D. M., Suttie, J. W., Moore, J. J.Vitamin K status of premature infants. Implications for current recommendations. Pediatrics 2001;108:1117–22.CrossRefGoogle ScholarPubMed
Gray, O. P., Ackerman, A.Fraser, A. J.Intracranial hemorrhage and clotting defects in low-birth-weight infants. Lancet 1968;1:545–8.CrossRefGoogle ScholarPubMed
Cole, V. A., Durbin, M., Olaffson, A.et al.Pathogenesis of intraventricular haemorrhage in newborn infants. Arch. Dis. Child. 1974;49:722–8.CrossRefGoogle ScholarPubMed
Setzer, E. S., Webb, I. B., Wassenaar, J. W.et al.Platelet dysfunction and coagulopathy in intraventricular hemorrhage in the premature infant. J. Pediatr. 1982;100:599–605.Google ScholarPubMed
MacDonald, M. M., Johnson, M. L., Rumack, C. M.et al.Role of coagulopathy in newborn intracranial hemorrhage. Pediatrics 1984;74:26–32.Google Scholar
Beverly, D. W., Chance, G. W., Inwood, M. J., Shaus, M., O'Keefe, B.Intraventricular haemorrhage and haemostasis defects. Arch. Dis. Child. 1984;59:444–8.CrossRefGoogle Scholar
Bor, M., Bel, F., Lineman, R., Ruys, J. H.Perinatal factors and periventricular haemorrhage in preterm infants. Am. J. Dis. Child. 1986;140:1125–30.Google ScholarPubMed
Pomerance, J. J., Teal, J. G., Gogolok, J. F., Brown, S., Stewart, M. E.Maternally administered antenatal vitamin K1: effect on neonatal prothrombin activity, partial thromboplastin time, and intraventricular hemorrhage. Obstet. Gynecol. 1987;70:235–41.Google ScholarPubMed
Morales, W. J., Angel, J. L., Brien, O' W. F., Knuppel, R. A., Marsalis, F.The use of antenatal vitamin K in the prevention of early neonatal intraventricular hemorrhage. Am. J. Obstet. Gynecol. 1988;159:774–9.CrossRefGoogle ScholarPubMed
Kazzi, N. J., Ilagan, N. B., Liang, K. C.et al.Maternal administration of vitamin K does not improve coagulation profile of preterm infants. Pediatrics 1989;84:1045–50.Google Scholar
Committee on Nutrition American Academy of Pediatrics. Vitamin K compounds and their water-soluble analogues: Use in therapy and prophylaxis in pediatrics. Pediatrics 1961;28:501–7.
Klebanoff, M. A., Read, J. S., Mills, J. L.et al.The risk of childhood cancer after neonatal exposure to vitamin K. N. Engl. J. Med. 1989;329:905–8.CrossRefGoogle Scholar
Greer, F. R.Vitamin K deficiency and hemorrhage in infancy. Clin. Perinatol. 1995;22:759–78.CrossRefGoogle ScholarPubMed
Andrew, M., Paes, B., Milner, R.et al.Development of the human coagulation system in the full-term infant. Blood 1987;70:165–72.Google ScholarPubMed
Andrew, M., Paes, B., Milner, R.et al.Development of the human coagulation system in the healthy premature infant. Blood 1988;72:1651–7.Google ScholarPubMed
Göbel, U., Sonnenschein-Kosenow, S., Petrich, C.et al.Vitamin K deficiency in the newborn. Lancet 1977;2:187–8.Google Scholar
Kries, R., Greer, F. P., Suttie, J. W.Assessment of vitamin K status of the newborn infant. J. Pediatr. Gastroenterol. Nutr. 1993;16:231–8.CrossRefGoogle Scholar
Liska, D. J., Suttie, J. W.Location of gamma-carboxyglutamyl residues in partially carboxylated prothrombin preparations. Biochemistry 1988;27:8636–41.CrossRefGoogle ScholarPubMed
Kries, R., Shearer, M. J., Widdershoven, J.et al.Des-gamma-carboxyprothrombin (PIVKA-II) and plasma vitamin K1 in newborns and their mothers. Thromb. Haemost. 1992;68:383–7.Google Scholar
Bovill, E. G., Soll, R. F., Lynch, M.et al.Vitamin K1 metabolism and the production of descarboxyprothrombin and protein C in the term and premature neonate. Blood 1993;81:77–83.Google ScholarPubMed
Motahara, K., Endo, F., Matsuda, I.Effect of vitamin K administration on carboxyprothrombin (PIVKA-II) levels in newborns. Lancet 1985;2:242–4.CrossRefGoogle Scholar
Motohara, K., Takayi, S., Endo, F.et al.Oral supplementation of vitamin K for pregnant women and effects on levels of plasma vitamin K and PIVKA-II in the neonate. J. Pediatr. Gastroenterol. Nutr. 1990;11:32–6.CrossRefGoogle ScholarPubMed
Greer, F. R., Costakos, D. T., Suttie, J. W.Determination of des-gamma-carboxy-prothrombin (PIVKA II) in cord blood of various gestational ages with the STAGO antibody – a marker of vitamin K deficiency?Pediatr. Res. 1999;45:283A.CrossRefGoogle Scholar
Widdershoven, J., Lambert, W., Motohara, K.et al.Plasma concentrations of vitamin K1 and PIVKA-II in bottle-fed and breast-fed infants with and without vitamin K prophylaxis at birth. Eur. J. Pediatr. 1988;148:139–42.CrossRefGoogle ScholarPubMed
Cornelissen, E., Kollée, L., DeAbreu, R.et al.Effects of oral and intramuscular vitamin K prophylaxis on vitamin K1, PIVKA-II and clotting factors in breast-fed infants. Arch. Dis. Child. 1992;67:1250–4.CrossRefGoogle ScholarPubMed
Cornelissen, E., , Kollée L., DeAbreu, R.et al.Prevention of vitamin K deficiency in infancy by weekly administration of vitamin K. Acta Pediatr. 1983;82:656–9.CrossRefGoogle Scholar
Cornelissen, E., Kollée, L., Lith, T.et al.Evaluation of a daily dose of 25 mg vitamin K1 to prevent vitamin K deficiency in breast-fed infants. J. Pediatr. Gastroenterol. Nutr. 1993;16:301–5.CrossRefGoogle ScholarPubMed
Moran, J. R., Greene, H. L.The B vitamins and vitamin C in human nutrition I. General considerations and “obligatory” B vitamins. Am. J. Dis. Child. 1979;133:192–9.CrossRefGoogle Scholar
Rindi, G., Ventura, U.Thiamine intestinal transport. Physiol. Rev. 1972;52:821–7.CrossRefGoogle ScholarPubMed
Gubler, C. J. Thiamine. In Machlin, L. J., ed. Handbook of Vitamins. New York City, NY: Marcel Dekker; 1991:233–82.Google Scholar
Davis, R. E., Icke, G. C.Clinical chemistry of thiamine. Adv. Clin. Chem. 1983;23:93–140.CrossRefGoogle Scholar
Link, G., Zempleni, J., Bitsch, I.The intrauterine turnover of thiamin in preterm and full-term infants. Int. J. Vit. Nutr. Res. 1998;68:242–8.Google ScholarPubMed
Picciano, M. F.Breastfeeding 2001, Part I. Representative values for constituents of human milk. Pediatr. Clin. N. Am. 2001;48:263–4.CrossRefGoogle Scholar
American Academy of Pediatrics. Vitamins. Pediatric Nutrition Handbook. 5th Edn. AAP; 2003.
Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC: National Academy Press; 2000.
Greene, H. L., Porcelli, P., Adcock, E., Swift, L.Vitamins for newborn infant formulas: a review of recommendations with emphasis on data from low-birth-weight infants. Eur. J. Clin. Nutr. 1992;46:S1–8.Google ScholarPubMed
Friel, J. K., Bessie, J. C., Belkhode, S. L.et al.Thiamine, riboflavin, pyridoxine, and vitamin C status in premature infants receiving parenteral and enteral nutrition. J. Parenter. Gastroenterol. Nutr. 2001;33:64–9.CrossRefGoogle ScholarPubMed
Rascoff, H.Beriberi heart in a 4 month old infant. J. Am. Med. Assoc. 1942;120:1292–3.CrossRefGoogle Scholar
Sauberlich, H. E.Biochemical alterations in thiamine deficiency: their interpretation. Am. J. Clin. Nutr. 1967;20:528–46.CrossRefGoogle ScholarPubMed
Moran, J. R., Greene, H. L. Nutritional biochemistry of water-soluble vitamins. In Grand, R. J., Sutphen, J. L., Dietz, W. H. Jr, eds. Pediatric Nutrition, Theory and Practice. Boston, MA: Butterworths; 1987:51–67.Google Scholar
Zempleni, J., Link, G., Bitsch, I.Intrauterine vitamin B2 uptake of preterm and full-term infants. Pediatr. Res. 1995;38:585–91.CrossRefGoogle ScholarPubMed
Porcelli, P. J., Rosser, M. L., DelPaggio, D.et al.Plasma and urine riboflavin during riboflavin-free nutrition in very-low-birth-weight infants. J. Parenter. Gastroenterol. Nutr. 2001;31:142–8.CrossRefGoogle Scholar
Lucas, A., Bates, C. J.Occurrence and significance of riboflavin deficiency in preterm infants. Biol. Neonate. 1987;52:113–18.CrossRefGoogle ScholarPubMed
Ramos, J. L. A., Barretto, O. C., Nonoyama, K.Vitamin dependent erythrocyte enzymes in newborns in relation to gestational age and birth weight. J. Perinat. Med. 1996;24:221–5.CrossRefGoogle ScholarPubMed
Wilson, R. G., Davis, R. E.Clinical chemistry of vitamin B6. Adv. Clin. Chem. 1983;23:1–68.CrossRefGoogle ScholarPubMed
Contractor, S. F., Shane, B.Blood and urine levels of vitamin B6 in the mother and fetus before and after loading of the mother with vitamin B6. Am. J. Obstet. Gynecol. 1970;107:635–40.CrossRefGoogle Scholar
Porcelli, P. J., Adcock, E. W., DelPaggio, D.et al.Plasma and urine riboflavin and pyridoxine concentrations in enterally fed very-low-birth-weight-neonates. J. Parenter. Gastroenterol. Nutr. 1996;23:141–6.CrossRefGoogle ScholarPubMed
Bessey, O. A., Adam, D. J. D., Hansen, A. E.Intake of vitamin B6 and infantile convulsions: a first approximation of requirements of pyridoxine in infants. Pediatrics 1957;20:33–44.Google ScholarPubMed
Molony, C. J., Parmelee, A. H.Convulsions in young infants as a result of pyridoxine (vitamin B6) deficiency. J. Am. Med. Assoc. 1954;154:405–6.CrossRefGoogle ScholarPubMed
Bartlett, K.Vitamin-responsive inborn errors of metabolism. Adv. Clin. Chem. 1986;23:141–98.CrossRefGoogle Scholar
Ubbink, J. B., Schnell, A. M.Assay of erythrocyte enzyme activity levels involved in vitamin B6 metabolism by high-performance liquid chromatography. J. Chromatogr. 1988;431:406–12.CrossRefGoogle Scholar
Raiten, D. J., Reynolds, R. D., Andon, M. B.et al.Vitamin B-6 metabolism in premature infants. Am. J. Clin. Nutr. 1991;53:78–83.CrossRefGoogle ScholarPubMed
Brewster, M. A. Vitamins. In Kaplan, L., Pesce, A., eds. Clinical Chemistry. St Louis, MO: C. V. Mosby Co; 1984:656–8.Google Scholar
Herbert, V.The 1986 Herman Award Lecture. Nutrition science as a continually unfolding story: The folate and vitamin B-12 paradigm. Am. J. Clin. Nutr. 1987;46:387–402.CrossRefGoogle ScholarPubMed
Moore, M. C., Greene, H. L., Phillips, B.et al.Evaluation of a pediatric multiple vitamin preparation for total parenteral nutrition in infants and children: I. Blood level of water-soluble vitamins. Pediatrics 1986;77:530–8.Google Scholar
Monagle, P. T., Tauro, G. P.Infantile megaloblastosis secondary to maternal vitamin B12 deficiency. Clin. Lab. Haem. 1997;19:23–5.CrossRefGoogle ScholarPubMed
Graham, S. M., Arvela, O. M., Wise, G. A.Long-term neurologic consequences of nutritional vitamin B12 deficiency in infants. J. Pediatr. 1992;121:710–4.CrossRefGoogle ScholarPubMed
Davis, R. E.Clinical chemistry of folic acid. Adv. Clin. Chem. 1986;25:233–94.CrossRefGoogle ScholarPubMed
Ek, J.Plasma and red cell folate values in newborn infants and their mothers in relation to gestational age. J. Pediatr. 1980;97:288–92.CrossRefGoogle ScholarPubMed
Hoffbrand, A. V.Folate deficiency in premature infants. Arch. Dis. Child. 1970;45:441–4.CrossRefGoogle ScholarPubMed
Ek, J. Folic acid and vitamin B12 requirements in premature infants. In Tsang, R. C., ed. Vitamin and Mineral Requirements in Preterm Infants. New York, NY: Marcel Dekker; 1985:23–38.Google Scholar
Stevens, D., Burman, D., Strelling, K., Morris, A.Folic acid supplementation in low birth weight infants. Pediatrics 1979;64:333–5.Google ScholarPubMed
Ek, J., Behneke, L., Halvorsen, K. S., Magnus, E.Plasma and red cell folate values and folate requirements in formula-fed premature infants. Eur. J. Pediatr. 1984;142:78–82.CrossRefGoogle ScholarPubMed
Mulinare, J., Cordero, J. F., Erickson, J. D., Berry, R. J.Periconceptional use of multivitamins and the occurrence of neural tube defects. J. Am. Med. Assoc. 1988;260:3141–5.CrossRefGoogle ScholarPubMed
Sauberlich, H. E., Skala, J. H., Dowdy, R. P.Laboratory Tests for the Assessment of Nutritional Status. Cleveland, OH: CRC Press; 1974.Google Scholar
Roth, K. S.Biotin in clinical medicine – a review. Am. J. Clin. Nutr. 1981;34:1967–74.CrossRefGoogle ScholarPubMed
Wolf, B., Heard, G. S., Weissbecker, K. A.et al.Biotinidase deficiency: initial clinical features and rapid diagnosis. Ann. Neurol. 1985;18:614–17.CrossRefGoogle ScholarPubMed
Mock, D. M., DeLorimer, A. A., Liebman, W. M.et al.Biotin deficiency: an unusual complication of parenteral alimentation. N. Engl. J. Med. 1981;304;820–3.CrossRefGoogle ScholarPubMed
Fox, H. M. Pantothenic acid. In Machlin, L. J., ed. Handbook of Vitamins. New York, NY: Marcel Dekker; 1984:437–58.Google Scholar
Gross, S. J. Choline, pantothenic acid, and biotin. In Tsang, R. C., ed. Vitamin and Mineral Requirements in Preterm Infants. New York, NY: Marcel Dekker; 1985:191–201.Google Scholar
Olson, J. A., Hodges, R. E.Recommended dietary intakes (recommended dietary intakes) of vitamin C in humans. Am. J. Clin. Nutr. 1987;45:693–703.CrossRefGoogle ScholarPubMed
Kallner, A., Hartmann, D., Hornig, D.On the absorption of ascorbic acid in man. Int. J. Vitam. Nutr. Res. 1977;47:383–8.Google ScholarPubMed
Ingalls, T. H.Ascorbic acid requirements in early infancy. N. Engl. J. Med. 1938;218:872–5.CrossRefGoogle Scholar
Irwin, M. I., Hutchins, B. K.A conspectus of research on vitamin C requirements of man (2). J. Nutr. 1976;106:823–79.CrossRefGoogle Scholar
Light, I. J., Berry, H. K., Sutherland, J. M.Aminoacidemia of prematurity. Am. J. Dis. Child. 1966;112:229–36.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Vitamins
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Vitamins
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Vitamins
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.015
Available formats
×