Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-26T15:54:29.236Z Has data issue: false hasContentIssue false

6 - Development and physiology of the gastrointestinal tract

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
C. L. Berseth
Affiliation:
Mead Johnson Nutritionals, Evansville, Indiana
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

When the gut evaginates and the cloacal and oral membranes rupture, the interface between amniotic fluid and the fetus is established. This interface serves as a conduit for the transfer of nutrients that are external to the fetus and the neonate. The aboral movement of amniotic fluid occurs as early as 18 weeks' gestation, and up to 450 ml of amniotic fluid move aborally through the intestine by term. While the intrauterine environment is sterile, the introduction of feedings presents a major challenge to host defense. Thus, the neonatal intestine is a digestive organ as well as an important component of the immune system. Both aspects of intestinal function will be reviewed in this chapter.

Digestion and absorption

Mucosal differentiation

During the second and third trimesters of pregnancy, growth and maturation of the gastrointestinal tract occur in preparation for postnatal life. The timing of structural and functional maturation is summarized in Tables 6.1 and 6.2. The gut lengthens to 250–300 cm by term, and gastric capacity is about 30 mL. During the second trimester, the glycocalyx appears, and the brush border is structurally well defined. Superficial glands are present in the pharyngeal and esophageal mucosa by 20 weeks and squamous cells by 28 weeks. Mucous and lingual lipases are also secreted. Endocrine, chief, mucus and parietal cells appear in the stomach by 12 weeks; by 16 weeks, these cells actively secrete hydrochloric acid, intrinsic factor, pepsin, gastrin and mucus.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hyman, P. E., Feldman, E. J., Ament, M. E., Byrne, W. J., Euler, A. R.Effect of enteral feeding on the maintenance of gastric acid secretory function. Gastroenterology 1983;84:341–5.Google ScholarPubMed
Antonowicz, I., Chang, S. K., Grand, R. J.Development and distribution of liposomal enzymes and disaccharidases in human fetal intestine. Gastroenterology 1974;67:51–8.Google Scholar
Auricchio, S., Rubino, A., Mürset, G.Intestinal glycosidase activities in the human embryo, fetus and newborn. Pediatrics 1965;3S:944–54.Google Scholar
Villa, M., Ménard, D., Semenza, G., Mantei, N.Expression of the lactase enzymatic activity and mRNA in human fetal jejunum. FEBS Lett. 1992;301:202–6.CrossRefGoogle ScholarPubMed
Triadou, N., Zweibaum, A.Maturation of sucrase-isomaltase complex in human fetal small and large intestine during gestation. Pediatr. Res. 1985;19:136–8.CrossRefGoogle ScholarPubMed
Jirsova, V., , Koldovsky O., Heringova, A.et al.The development of the functions of the small intestine of the human fetus. Biol. Neonate 1996;9:44–9.CrossRefGoogle Scholar
Levin, R. J., Koldovsky, O., Hoskova, J., Jirsova, V., Uher, J.Electrical activity across human foetal small intestine associated with absorption processes. Gut 1968;9:206–13.CrossRefGoogle ScholarPubMed
Berseth, C. L., Nordyke, C. K., Valdes, M. G., Furlow, B. L., Go, V. L. W.Responses of gastrointestinal peptides and motor activity to milk and water feedings in preterm and term infants. Pediatr. Res. 1992;31:587–90.CrossRefGoogle ScholarPubMed
Berseth, C. L.Effect of early feeding on maturation of the preterm infant's small intestine. J. Pediatr. 1992;120:947– 53.CrossRefGoogle ScholarPubMed
Lucas, A., Bloom, S. R., Aynsley-Green, A. Development of gut hormone responses to feeding in neonates. Arch. Dis. Child. 1980;55:678–82.CrossRefGoogle ScholarPubMed
Zoppi, G., Andreotti, G., Pajno-Ferrara, F., Njai, D. M., Gaburro, D.Exocrine pancreas function in premature and term infants. Pediatr. Res. 1972;6:880–6.CrossRefGoogle Scholar
Lebenthal, E., Lee, P. C.Development of functional responses in human exocrine pancreas. Pediatrics 1980;66:556–60.Google ScholarPubMed
Watkins, J. B., Szczepanik, P., Gould, J. B., Klein, P., Lester, R.Bile metabolism in the premature infant: preliminary observations of pool size and synthesis rate following prenatal administration of dexamethasone and phenobarbital. Gastroenterology 1975;69:706–13.Google ScholarPubMed
Heubi, J. E., Balistreri, W. F.Bile salt metabolism in infants and children after protracted diarrhea. Pediatr. Res. 1980;14:943–6.CrossRefGoogle Scholar
MacLean, W. C. Jr, Fink, B. B.Lactase malabsorption by premature infants: Magnitude and clinical significance. J. Pediatr. 1980;97:383–8.CrossRefGoogle Scholar
Potter, G. D., Lester, R.The developing colon and nutrition. J. Pediatr. Gastroenterol. Nutr. 1984;3:485–7.Google ScholarPubMed
Kerzner, B., Sloan, H. R., Haase, G., McClung, H. J., Ailabouni, A. H.The jejunal absorption of glucose oligomers in the absence of pancreatic enzymes. Pediatr. Res. 1981;15:250–3.CrossRefGoogle ScholarPubMed
Walker, W. A.Antigen handling by the gut. Arch. Dis. Child. 1978;53:527–31.CrossRefGoogle Scholar
Hutchens, T. W., Henry, J. F., Yip, T. T.et al.Origin of intact lactoferrin and its DNA-binding fragments found in the urine of human milk fed preterm infants: evaluation by stable isotope enrichment. Pediatr. Res. 1991;29:243–50.CrossRefGoogle Scholar
Weaver, L. T., Laker, M. F., Nelson, R.Intestinal permeability in the newborn. Arch. Dis. Child. 1984;59:236–41.CrossRefGoogle ScholarPubMed
Erasmus, H. D., Ludwig-Auser, H. M., Paterson, P. G., Sun, D., Sankaran, K.Enhanced weight gain in preterm infants receiving lactase-treated feeds: a randomized, double-blind, controlled trial. J. Pediatr. 2002;141:532–7.CrossRefGoogle ScholarPubMed
Mihatsch, W. A., Franz, A. R., Hogel, J., Pohlandt, F.Hydrolyzed protein accelerates feeding advancement in very low birth weight infants. Pediatrics 2002;110:1199–203.CrossRefGoogle ScholarPubMed
Rigo, J., Salle, B. L., Picaud, J. C., Putet, G., Sonterre, J.Nutritional evaluation of protein hydrolysate formulas. Eur. J. Clin. Nutr. 1995;49:S26–38.Google ScholarPubMed
Szajewska, H., Albrecht, P., Stoitiska, B.et al.Extensive and partial protein hydrolysate preterm formulas: the effect on growth rate, protein metabolism indices and plasma amino acid concentrations. J. Pediatr. Gastroenterol. Nutr. 2001;32:303–9.CrossRefGoogle ScholarPubMed
Slagle, T. A., Gross, S. J.Effect of early low-volume enteral substrate on subsequent feeding tolerance in very low birth weight infants. J. Pediatr. 1988;113:526–31.CrossRefGoogle ScholarPubMed
Meetze, W. H., Valentine, C., McGuigan, J. E., et al.Gastrointestinal priming prior to full enteral nutrition in very low birth weight infants. J. Pediatr. Gastroenterol. Nutr. 1992;15;163–70.CrossRefGoogle ScholarPubMed
Tyson, J. E., Kennedy, K. A.Minimal enteral nutrition for promoting feeding tolerance and preventing morbidity in parenterally fed infants. Cochrane Database Syst Rev. 2000;2:CD000504.Google Scholar
Barker, D. J., Osmond, C., Simmonds, S. J., Wield, G. A.The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. Br. Med. J. 1993;306:422–6.CrossRefGoogle ScholarPubMed
Nilsson, P. M., Ostergren, P. O., Nyberg, P., Soderstrom, M., Alleback, P.Low birth weight is associated with elevated systolic blood pressure in adolescence: a prospective study of a birth cohort of 149,378 Swedish boys. J. Hypertens. 1997;15:1627–31.CrossRefGoogle Scholar
Hales, C. N., Barker, D. J., Clark, P. M.et al.Fetal and infant growth and impaired glucose tolerance at age 64. Br. Med. J. 1991;303:1019–22.CrossRefGoogle ScholarPubMed
Kries, R., Koletzko, B., Sauerwald, T.et al.Breastfeeding and obesity: cross sectional study. Br. Med. J. 1999;319:147–50.CrossRefGoogle Scholar
Singhal, A., Cole, T. J., Lucas, A.Early nutrition in preterm infants and later blood pressure: two cohorts after randomised trials. Lancet 2001;357:413–19.CrossRefGoogle ScholarPubMed
Pettit, D. J., Forman, M. R., Hanson, R. L.Breastfeeding and incidence of non-insulin-dependent diabetes mellitus in Pima Indians. Lancet 1997;350:166–8.CrossRefGoogle Scholar
Rotimi, V. O., Duerden, B.The development of anaerobic fecal flora in healthy newborn infants. J. Pediatr. 1977;91:298–301.Google Scholar
Cooperstock, M. S., Zedd, A. J. Intestinal flora of infants. In Hentgis, D., ed. Human Intestinal Microflora in Health and Disease. New York, NY: Academic Press; 1983:79.Google Scholar
Harmsen, H. J., Wildeboer-Veloo, A. C., Raangs, G. C.et al.Analysis of intestinal flora development in breast fed and formula fed infants by molecular identification methods. J. Pediatr. Gastroenterol. Nutr. 2000;30:61–7.CrossRefGoogle Scholar
Amarnath, R. P., Berseth, C. L., Malagelada, J.-R.et al.Postnatal maturation of small intestinal motility in preterm and term infants. J. Gastrointestin. Motil. 1989;1:138–43.CrossRefGoogle Scholar
Berseth, C. L., Bisquera, J. A., Paje, V. U.Prolonging small feeding volumes early in life decreases the incidence of necrotizing enterocolitis in very low birth weight infants. Pediatrics 2003;111:529–34.CrossRefGoogle ScholarPubMed
Baker-Wills, E., Berseth, C. L.Antenatal steroids enhance maturation of small intestinal motor activity in preterm infants. Pediatr. Res. 1996;39:193A.CrossRefGoogle Scholar
Beck-Sague, C. M., Azimi, P., Fonseca, S. N., et al.Bloodstream infections in neonatal intensive care unit patients: results of a multicenter study. Pediatr. Infect. Dis. J. 1994;13:1110–16.CrossRefGoogle ScholarPubMed
Cornes, J. S.Number, size and distribution of Peyer's patches in the human small intestine. Gut 1965;6:225–33.CrossRefGoogle ScholarPubMed
Rieger, C. H., Rothberg, R. M.Development of the capacity to produce specific antibody to an ingested food antigen in the premature infant. J. Pediatr. 1975;87:515–18.CrossRefGoogle Scholar
Nanthakumar, N. N., Fusunyan, R. D., Sanderson, I., Walker, W. A.Inflammation in the developing human intestine: a possible pathophysiologic contribution to necrotizing enterocolitis. Proc. Natl. Acad. Sci. USA. 2000;97:6043–8.CrossRefGoogle ScholarPubMed
He, Y., Sanderson, I. R., Walker, W. A.Uptake, transport and metabolism of exogenous nucleosides in intestinal epithelial cell cultures. J. Nutr. 1994;124:1942–9.CrossRefGoogle ScholarPubMed
Weiss, M. D., DeMarco, V., Strauss, D. M.et al.Glutamine synthetase: a key enzyme for intestinal epithelial differentiation. JPEN. 1999;23:140–6.CrossRefGoogle ScholarPubMed
Neu, J.Glutamine deprivation: effect on the small intestinal barrier. FASEB J. 2001;15:A294.Google Scholar
Neu, J., Roig, J. C., Meetze, W. H.et al.Enteral glutamine supplementation for very low birth weight infants decreases morbidity. J. Pediatr. 1997;131:691–9.CrossRefGoogle ScholarPubMed
Becker, R. M., Wu, G., Galanko, J. A.et al.Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J. Pediatr. 2000;137:785–93.CrossRefGoogle ScholarPubMed
Zamora, S. A., Amin, H. J., McMillan, D. D.et al.Plasma L-arginine concentrations in premature infants with necrotizing enterocolitis. J. Pediatr. 1997;131:226–32.CrossRefGoogle ScholarPubMed
Lorenzo, Di C., Flores, A. F., Hyman, P. E.Age-related changes in colon motility. J. Pediatr. 1995;127:593–6.CrossRefGoogle ScholarPubMed
Amin, H. J., Zamora, S. A., McMillan, D. D., et al.Arginine supplementation prevents necrotizing enterocolitis in the premature infant. J. Pediatr. 2002;140:425–31.CrossRefGoogle ScholarPubMed
Caplan, M. S., Russell, T., Xiao, Y.et al.Effect of polyunsaturated acid (polyunsaturated fatty acids) supplementation on intestinal inflammation and necrotizing enterocolitis (necrotizing enterocolitis) in a neonatal rat model. Pediatr. Res. 2001;49:647–52.CrossRefGoogle Scholar
O'Connor, D. L., Hall, R., Adamkin, D.et al.Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: a prospective, randomized controlled trial. Pediatrics 2001;108:359–71.CrossRefGoogle ScholarPubMed
Clandinin, M. T., VanAerde, J., Antonson, D.et al.Formulas with docosahexaenoic (DHA) and arachidonic acid (ARA) promote better growth and development scores in very-low-birth-weight infants (VLBW). Pediatr. Res. 2002;51:187A–8A.Google Scholar
Carlson, S. E., Montalto, M. B., Ponder, D. L.et al.Lower incidence of necrotizing enterocolitis in infants fed a preterm formula with egg phospholipids. Pediatr. Res. 1998;44:491–8.CrossRefGoogle ScholarPubMed
Gibson, G. R., Beatty, E. R., Wang, X., Cummings, J. H.Selective stimulation of bifidobacteria in the human colon by oligofructose and insulin. Gastroenterology 1995;108:975–82.CrossRefGoogle Scholar
Boehm, G., Lidestri, M., Casetta, P.et al.Supplementation of a bovine milk formula with an oligosaccharide mixture increases counts of faecal bifidobacteria in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2002;86:F178–81.CrossRefGoogle ScholarPubMed
Caplan, M. S., Miller-Catchpole, R., Kaup, S.et al.Bifidobacterial supplementation reduces the incidence of necrotizing enterocolitis in a neonatal rat model. Gastroenterology 1999;117:577–83.CrossRefGoogle Scholar
Vanderhoof, J. A., Whitney, D. B., Antonson, D. L.et al.Lactobacillus GG in the prevention of antibiotic-associated diarrhea in children. J. Pediatr. 1999;135:564–8.CrossRefGoogle ScholarPubMed
Arvola, T., Laiho, K., Torkkeli, S.et al.Prophylactic Lactobacillus GG reduces antibiotic-associated diarrhea in children with respiratory infections: a randomized study. Pediatrics 1999;104:e64.CrossRefGoogle ScholarPubMed
Oberhelman, R. A., Gilman, R. H., Sheen, P.et al.A placebo-controlled trial of Lactobacillus GG to prevent diarrhea in undernourished Peruvian children. J. Pediatr. 1999;134:15–20.CrossRefGoogle ScholarPubMed
Bennet, R., Nord, C. E., Zetterstrom, R.Transient colonization of the gut of newborn infants by orally administered bifidobacteria and lactobacilli. Acta Paediatr. 1992;81:784–7.CrossRefGoogle ScholarPubMed
Lari, A. R., Gold, F., Borderon, J. C., Laugier, J., Lafont, J.-P.Implantation and in vivo antagonistic effects of antibiotic-susceptible Escherichia coli strains administered to premature newborns. Biol. Neonate 1990;58:73–8.CrossRefGoogle Scholar
Cukrowaska, B., Lodinova-Zadnikova, R., Enders, C.et al.Specific proliferative and antibody responses of premature infants to intestinal colonization with nonpathogenic probiotic E. coli strain Nissle 1918. Scand. J. Immunol. 2002;55:204–9.CrossRefGoogle Scholar
Agarwal, R., Sharma, N., Chaudhry, R.et al.Effects of oral Lactobacilllus GG on enteric microflora in low-birth-weight neonates. J. Pediatr. Gastroenterol. Nutr. 2003;36:397–402.CrossRefGoogle Scholar
Millar, M. R., Bacon, C., Smith, S. L., Walker, V., Hall, M. A.Enteral feeding of premature infants with Lactobacillus GG. Arch. Dis. Child. 1993;69:483–7.CrossRefGoogle ScholarPubMed
Gotteland, M., Cruchet, S., Verbeke, S.Effect of Lactobacillus ingestion on the gastrointestinal mucosal barrier alterations induced by indomethacin in humans. Aliment. Pharmacol. Ther. 2001;15:11–17.CrossRefGoogle ScholarPubMed
Hoyos, A. B.Reduced incidence of necrotizing enterocolitis associated with enteral administration of Lactobacillus acidophilus and Bifidobacterium infantis to neonates in an intensive care unit. Int. J. Infect. Dis. 1999;3:197–202.CrossRefGoogle Scholar
Turnberg, L. A., Riley, S. A. Digestion and absorption of nutrients and vitamins. In Sleisenger, M. H., ed. Gastrointestinal Disease: Pathophysiology, Diagnosis, Management. 5th edn. Philadelphia, PA: W. B. Saunders; 1993:978.Google Scholar
Insoft, R. M., Sanderson, I. R., Walker, W. A.Development of immune function in the intestine and its role in neonatal diseases. Pediatr. Clin. N. Am. 1996;43:551–71.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×