Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T02:02:45.223Z Has data issue: false hasContentIssue false

Back to basics: a plea for a fundamental reappraisal of the representation of acidity and basicity in biological solutions

Published online by Cambridge University Press:  22 August 2009

S. Egginton
Affiliation:
University of Birmingham
Edwin W. Taylor
Affiliation:
University of Birmingham
J. A. Raven
Affiliation:
University of Dundee
Get access

Summary

Introduction

The acid–base status of an aqueous solution is reflected by the relative activities of hydrogen ({H+}) and hydroxide ({OH}) ions. These two quantities can be altered by changes in temperature, the concentrations of weak and strong electrolytes, and PCO2 (Stewart, 1978). In biological solutions, {H+} is determined by the strong ion difference (SID) (defined as the sum of all strong base cations minus the sum of all strong acid anions), PCO2, and the total weak acids present. At constant temperature, acid–base status can be changed only by changes in one or more of these independent variables (Stewart, 1978).

The maintenance of a stable acid–base status of the internal body fluids is thought to be of importance to animals primarily because of the need to maintain protein function. Protein structure (and hence function) is dependent on the degree of ionisation of the component amino acids and of the α-imidazole group in particular (Reeves, 1972). The degree of ionisation of amino acids can be altered by changes in the acid–base conditions of the medium. To preserve protein function and maintain the physiological processes to which it contributes, animals must regulate acid–base status and may, for example when faced by changes in temperature, either maintain a constant relative alkalinity (see below), or regulate pH independently of temperature, in order to depress or enhance rates of metabolism (see Whiteley, this volume).

To understand fully how these processes are affected by acid–base conditions and how acid–base status is maintained in living organisms requires a suitable means for representing the acid–base status of a solution.

Type
Chapter
Information
Regulation of Tissue pH in Plants and Animals
A Reappraisal of Current Techniques
, pp. 353 - 372
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×