Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-20T01:32:44.603Z Has data issue: false hasContentIssue false

15 - Marsh Edge Erosion

from Part III - Marsh Response to Stress

Published online by Cambridge University Press:  19 June 2021

Duncan M. FitzGerald
Affiliation:
Boston University
Zoe J. Hughes
Affiliation:
Boston University
Get access

Summary

Salt marshes are coastal ecosystems located at the boundary between sea and land, generally in tidal environments, often covered by halophytic vegetation and periodically flooded by tide (Allen 2000).

Type
Chapter
Information
Salt Marshes
Function, Dynamics, and Stresses
, pp. 388 - 422
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. R. L. 1989. Evolution of salt-marsh cliffs in muddy and sandy systems: a qualitative comparison of British west-coast estuaries. Earth Surface Processes and Landforms 14(1): 8592.Google Scholar
Allen, J. R. L. 2000. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews 19(12):11551231.Google Scholar
Altieri, A. H., Bertness, M. D., Coverdale, T. C., Herrmann, N. C., and Angelini, C. 2012. A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing. Ecology 93(6): 14021410.Google Scholar
Amos, C. L., Bergamasco, A., Umgiesser, G., Cappucci, S., Cloutier, D., DeNat, L., Flindt, M., Bonardi, M., and Cristante, S. 2004. The stability of tidal flats in Venice Lagoon: The results of in-situ measurements using two benthic, annular flumes, Journal of Marine Systems, 51: 211241.Google Scholar
Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., and Silliman, B. R. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81(2): 169193.Google Scholar
Barbier, E. B., Georgiou, I. Y., Enchelmeyer, I. Y., and Reed, D. J. 2013. The value of wetlands in protecting Southeast Louisiana from hurricane storm surges. PLoS ONE 8: e58715. https://doi.org/10.1371/journal.pone.0058715.Google Scholar
Beland, M., Biggs, T. W., Roberts, D. A., Peterson, S. H., Kokaly, R. F., and Piazza, S. 2017. Oiling accelerates loss of salt marshes, southeastern Louisiana, PLoS ONE 12(8): e0181197.CrossRefGoogle ScholarPubMed
Bell, F. W. 1997. The economic valuation of saltwater marsh supporting marine recreational fishing in the southeastern United States. Ecological Economics 21: 243254.Google Scholar
Bendoni, M. 2015. Salt marsh edge erosion due to wind-induced waves. PhD Thesis. University of Florence-TU Braunschweig.Google Scholar
Bendoni, M., Francalanci, S., Cappietti, L., and Solari, L. 2014. On salt marshes retreat: Experiments and modeling toppling failures induced by wind waves. Journal of Geophysical Research Earth Surface, 119: 603620.Google Scholar
Bendoni, M., Mel, R., Solari, L., Lanzoni, S., Francalanci, S., and Oumeraci, H. 2016. Insights into lateral marsh retreat mechanism through localized field measurements. Water Resources Research, 52: 14461464.CrossRefGoogle Scholar
Bilkovic, D., Mitchell, M., Davis, J., Andrews, E., King, A., Mason, P., Herman, J., Tahvildari, N., and Davis, J. 2017. Review of boat wake wave impacts on shoreline erosion and potential solutions for the Chesapeake Bay. STAC Publication Number 17-002, Edgewater, MD.Google Scholar
Boesch, D. F., and Turner, R. E., 1984. Dependence of fishery species on salt marshes: The role of food and refugeEstuaries 7: 460468.CrossRefGoogle Scholar
Booij, N., Ris, R. C., and Holthuijsen, L. H. 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans 104 (C4): 76497666.CrossRefGoogle Scholar
Breugem, W. A., and Holthuijsen, L., 2007. Generalized shallow water wave growth from Lake George. Journal of Waterway Port Coastal and Ocean Engineering 133: 2337.CrossRefGoogle Scholar
Bromberg, K. D., and Bertness, M. D. 2005. Reconstructing New England salt marsh losses using historical maps. Estuaries 28: 823832.CrossRefGoogle Scholar
Callaghan, D. P., Bouma, T. J., Klaassen, P., Van der Wal, D., Stive, M. J. F., and Herman, P. M. J. 2010. Hydrodynamic forcing on salt-marsh development: Distinguishing the relative importance of waves and tidal flows. Estuarine, Coastal and Shelf Science 89 (1): 7388.Google Scholar
Chauhan, P. P. S. 2009. Autocyclic erosion in tidal marshes. Geomorphology 110(3): 4557.CrossRefGoogle Scholar
Chen, Y., Collins, M. B., and Thompson, C. E. L. 2011. Creek enlargement in a low-energy degrading saltmarsh in southern England. Earth Surface Processes and Landforms 36: 767778.Google Scholar
Chen, Y., Thompson, C. E. L., and Collins, M. B. 2012. Saltmarsh creek bank stability: Biostabilisation and consolidation with depth. Continental Shelf Research 35: 6474.CrossRefGoogle Scholar
Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., and Lynch, J. C. 2003. Global carbon sequestration in tidal saline wetland soils. Global Biogeochemical Cycles 17:1111.CrossRefGoogle Scholar
Cola, S., Sanavia, L., Simonini, P., and Schrefler, B. A. 2008. Coupled thermohydromechanical analysis of Venice lagoon salt marshes. Water Resources Research 44(5): W00C05. https://doi.org/10.1029/2007WR006570Google Scholar
Coops, H., Van der Brink, F.W.B., and Van der Velde, G.. 1996. Growth and morphological responses of four helophyte species in an experimental water-depth gradient. Aquatic Botany 54: 1124.Google Scholar
Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., et al. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253260.CrossRefGoogle Scholar
Costanza, R., Pérez-Maqueo, O., Martinez, M. L., Sutton, P., Anderson, S. J., and Mulder, K. 2008. The value of coastal wetlands for hurricane protection. Ambio 37: 241248.Google Scholar
Coverdale, C. T., Bertness, M. D., and Altieri, A. H. 2013. Regional ontogeny of New England salt marsh die-off. Conservation Biology 27(5): 10411048.Google Scholar
Davidson, T. M., and de Rivera, C. E. 2010. Accelerated erosion of saltmarshes infested by a non-native burrowing crustacean Sphaeroma quoianum. Marine Ecology Progress Series 419: 129136.Google Scholar
D’Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo, A. 2007. Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics. Journal of Geophysical Research: Earth Surface 112 (F1): https://doi.org/10.1029/2006JF000537.Google Scholar
Day, J. W., Scarton, F., Rismondo, A., and Are, D. 1998. Rapid deterioration of a salt marsh in Venice Lagoon, Italy. Journal of Coastal Research 14: 583590.Google Scholar
Deegan, L.A., Johnson, D. S., Warren, R. S., Peterson, B. J., Fleeger, J. W., Fagherazzi, S. and Wollheim, W. M. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490: 388392.CrossRefGoogle ScholarPubMed
Emerton, L., and Kekulandala, L. 2003. Assessment of the economic value of Muthurajawela wetland. Occasional Papers of IUCN Sri Lanka, IUCN-World Conservation Union, Sri Lanka Country Office, Colombo (Sri Lanka), Volume 4.Google Scholar
Fagherazzi, S. and Wiberg, P. L. 2009. Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins. Journal of Geophysical Research, Vol. 114, F03022: DOI: 10.1029/2008JF001139.Google Scholar
Fagherazzi, S., Kirwan, M. L., Mudd, S. M., Guntenspergen, G. R., Temmerman, S., D’Alpaos, A., Koppel, J., et al. 2012. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Reviews of Geophysics 50 (1): https://doi.org/10.1029/2011RG000359.CrossRefGoogle Scholar
Feagin, R. A., Irish, J. L., Möller, I., Williams, A. M., Colón-Rivera, R. J., and Mousavi, M. E. 2009. Does vegetation prevent wave erosion of salt marsh edges? Proceedings of the National Academy of Sciences of the USA, 106(25): 1010910113.CrossRefGoogle ScholarPubMed
FitzGerald, D., Hughes, Z., and Rosen, P. 2011. Boat wake impact and their role in shore erosion processes, Boston Harbor Islands National Recreation Area, Natural Resource Report NPS/NERO/NRR-2011/403, National Park Service, Fort Collins, Colorado.Google Scholar
Francalanci, S., Bendoni, M., Rinaldi, M., and Solari, L. 2013. Ecomorphodynamic evolution of salt marshes: Experimental observations of bank retreat processes. Geomorphology 195: 5365.Google Scholar
Fredsoe, J., and Deigaard, R. 1993. Mechanics of Coastal Sediment Transport. Advanced Series on Ocean Engingeering, vol. 3, World Science, Singapore.Google Scholar
French, G. T. 1990. Historical shoreline changes in response to environmental conditions in west Delaware Bay. MA thesis. University of Maryland College Park.Google Scholar
Gabet, E. J. 1998. Lateral migration and bank erosion in a saltmarsh tidal channel in San Francisco Bay, California. Estuaries 21 (4): 745753.Google Scholar
Gazetas, G. 1991. Foundation vibrations. Ed. by Fang, H. I. Foundation Engineering Handbook. . Kluwer Academic Publishers, Massachusetts, USA, pp. 553593.Google Scholar
Gedan, K. B., Silliman, B. R., and Bertness, M. D. 2009. Centuries of humandriven change in salt marsh ecosystems. Annual Review of Marine Science 1: 117141.Google Scholar
Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B., and Silliman, B. R. 2011. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Climatic Change 106 (1): 729.CrossRefGoogle Scholar
Gosselink, J. G. and Pope, R. M. 1974. The Value of The Tidal Marsh. (LSUSG-74-03, Center for Wetland Resources, Baton Rouge: Louisiana StateUniversity.Google Scholar
Gray, D. H., and Leiser, A. T.. 1982. Biotechnical slope protection and erosion control. Van Nostrand Reinhold Company Inc, New York.Google Scholar
Houser, C. 2010. Relative importance of vessel-generated and wind waves to salt marsh erosion in a restricted fetch environment. Journal of Coastal Research: 230–240.CrossRefGoogle Scholar
Howes, N. C., FitzGerald, D. M., Hughes, Z. J., Georgiou, I. Y., Kulp, M. A., Miner, M. D., Smith, J. M., and Barras, J. A. 2010. Hurricane-induced failure of low salinity wetlands. Proceedings of the National Academy of Sciences of the USA 107 (32): 1401414019.CrossRefGoogle ScholarPubMed
Huges, Z. J., FitzGerald, D. M., Howes, N. C., and Rosen, P. S. 2007. The impact of natural waves and ferry wakes on bluff erosion and beach morphology, Boston Harbor, USA. Journal of Coastal Research, SI 50 (Proceedings of the 9th International Coastal Symposium), 497–501. Gold Coast, Australia, ISSN 0749.0208.Google Scholar
Hughes, Z. J., FitzGerald, D. M., Wilson, C. A., Pennings, S. C., Wieski, K., and Mahadevan, A. 2009. Rapid headward erosion of marsh creeks in response to relative sea level rise. Geophysical Research Letters 36, L03602, doi:10.1029/2008GL036000.Google Scholar
Jadhav, R. S., and Chen, Q. 2013. Probability distribution of wave heights attenuated by salt marsh vegetation during tropical cyclone. Coastal Engineering 82: 4755.Google Scholar
Jadhav, R. S., Chen, Q., and Smith, J. M. 2013. Spectral distribution of wave energy dissipation by salt marsh vegetation. Coastal Engineering 77: 99107.Google Scholar
Karimpour, A., Chen, Q., and Twilley, R. R. 2016. A field study of how wind waves and currents may contribute to the deterioration of saltmarsh fringe. Estuaries and Coasts 39: 935950.Google Scholar
Kennish, M. J. 2001. Coastal salt marsh system in the U.S.: A review of anthropogenic impacts. Journal of Coastal Research 17(3): 731748.Google Scholar
Keulegan, G. H. and Carpenter, L. H. 1958. Forces on cylinders and plates in an oscillating fluid. Journal of Research of the National Bureau of Standards 60 (5): 423440.Google Scholar
King, S. E., and Lester, J. N. 1995. The value of salt marsh as a sea defence. Marine Pollution Bulletin 30 (3):180189.Google Scholar
Kirwan, M. L., Guntenspergen, G. R., D’Alpaos, A., Morris, J. T., Mudd, S. M., and Temmerman, S. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37(23): https://doi.org/10.1029/2010GL045489Google Scholar
Kirwan, M. L., and Murray, A. B. 2007. A coupled geomorphic and ecological model of tidal marsh evolution, Proceedings of the National Academy of Science of the USA, 104, 61186122.CrossRefGoogle ScholarPubMed
Kirwan, M. L., and Murray, A. B. 2008. Tidal marshes as disequilibrium landscapes? Lags between morphology and Holocene sea level change. Geophysical Research Letters, 35, L24401, doi:10.1029/%202008GL036050.Google Scholar
Kirwan, M. and Temmerman, S. 2009. Coastal marsh response to historical and future sea-level acceleration. Quaternary Science Reviews 28(17): 18011808.CrossRefGoogle Scholar
Kobayashi, N., Raichle, A. W. and Asano, T. 1993. Wave attenuation by vegetation. Journal of Waterway Port Coastal and Ocean Engineering 119(1): 3048.Google Scholar
Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J. P., Srivastava, A. K., and Sugi, M. 2010. Tropical cyclones and climate change, Nature Geoscience 3: 157163.Google Scholar
Le Hir, P., Monbet, Y., and Orvain, F., 2007. Sediment erodability in sediment transport modeling: Can we account for biota effects? Continental Shelf Research 27: 11161142.CrossRefGoogle Scholar
Leonardi, N. and Fagherazzi, S. 2014. How waves shape salt marshes. Geology, 42 (10): 887890.Google Scholar
Leonardi, N. and Fagherazzi, S. 2015. Effect of local variability in erosional resistance on large-scale morphodynamic response of salt marshes to wind waves and extreme events. Geophysical Research Letters 42: 58725879, doi:10.1002/2015GL064730.Google Scholar
Leonardi, N., Ganju, N. K. and Fagherazzi, S. 2015. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proceedings of the National Academy of Sciences 113 (1): 564568.Google Scholar
Leonardi, N., Defne, Z., Ganju, N. K., and Fagherazzi, S. 2016. Salt marsh erosion rates and boundary features in a shallow Bay. Journal of Geophysical Research Earth Surface, 121: 18611875.Google Scholar
Madsen, P. A., and Sørensen, O. R. 1992. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2: A slowly varying bathymetry. Coastal Engineering, 18, 183204.Google Scholar
Malkin, A. Y. and Isayev, A. Y. 2006. Rheological Concepts, Methods and Applications. ChemTech, Toronto.Google Scholar
Marani, M., D’Alpaos, A., Lanzoni, S., and Santalucia, M. 2011. Understanding and predicting wave erosion of marsh edges. Geophysical Research Letters 38 (21): https://doi.org/10.1029/2011GL048995.CrossRefGoogle Scholar
Mariotti, G. and Fagherazzi, S. 2010. A numerical model for the coupled longterm evolution of salt marshes and tidal flats. Journal of Geophysical Research: Earth Surface 115 (F1): https://doi.org/10.1029/2009JF001326.Google Scholar
Mariotti, G. and Fagherazzi, S. 2013. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. Proceedings of the National Academy of Sciences of the USA, 110 (14): 53535356.Google Scholar
Mariotti, G. and Fagherazzi, S. 2013. Wind waves on a mudflat: The influence of fetch and depth on bed shear stresses. Continental Shelf Research, 60, S99S110.Google Scholar
Mariotti, G., Fagherazzi, S., Wiberg, P. L., McGlathery, K. J., Carinello, L., and Defina, A. 2010. Influence of storm surges and sea level on shallow tidal basin erosive proecesses. Journal of Geophysical Research, 115, C11012. https://doi.org/10.1029/2009JC005892.Google Scholar
Maurmeyer, E. M. 1978. Geomorphology and evolution of transgressive estuarine washover barrier along the western shore of Delaware Bay. PhD thesis. University of Delaware, Newark.Google Scholar
Maynord, S. 2001. Boat waves on Johnson Lake and Kenai River, Alaska. Technical Report U.S. Army Corps of Engineers. (No. ERDC/CHL-TR-01-31.Google Scholar
McLoughlin, S. M., Wiberg, P. L., Safak, I., and McGlathery, K. J. 2014. Rates and forcing of marsh edge erosion in a shallow coastal bay. Estuaries and Coasts, 38 : 620638.Google Scholar
Mendez, F. J., and Losada, I. J. 2004. An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coastal Engineering, 51 (2): 103118.CrossRefGoogle Scholar
Minkoff, D. R., Escapa, M., Ferramola, F. E., Maraschin, S. D., Pierini, J. O., Perillo, G. M. E., and Delrieux, C. 2006. Effects of crabe-halophytic plant interactions on creek growth in a S. W. Atlantic salt marsh: A Cellular Automata model. Estuarine Coastal Shelf Science, 69, 403413.CrossRefGoogle Scholar
Mirtskhoulava, T. E. 1991. Scouring by flowing water of cohesive and non cohesive beds. Journal of Hydraulic Research, 29 (3):341354.Google Scholar
Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., van Wesenbeeck, B. K., Wolters, G., et al. 2014. Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geoscience, 7 (10):727731.Google Scholar
Möller, I. and Spencer, T. 2002. Wave dissipation over macro-tidal salt marshes: Effects of marsh edge typology and vegetation change. Journal of Coastal Research, 36(1):506521.CrossRefGoogle Scholar
Morris, P. H., Graham, J., and Williams, D. J. 1992. Cracking in drying soils. Canadian Geotechnical Journal, 29 (2): 263277.Google Scholar
Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B., and Cahoon, D. R. 2002. Responses of coastal wetlands to rising sea level. Ecology, 83 (10): 28692877.Google Scholar
Neumeier, U. and Amos, C. L. 2006. The influence of vegetation on turbulence and flow velocities in European salt marshes. Sedimentology, 53: 259277.Google Scholar
Ojea, E., Martin-Ortega, J., and Chiabai, A. 2012. Defining and classifying ecosystem services for economic valuation: the case of forest water services. Environmental Science and Policy, 19–20: 115.Google Scholar
Ozeren, Y., Wren, D. G., and Wu, W. 2013. Experimental investigation of wave attenuation through model and live vegetation. Journal of Waterway, Port, Coastal, and Ocean Engineering 140 (5): https://doi.org/10.1061/(ASCE)WW.1943-5460.0000251Google Scholar
Phillips, J. D. 1985. Aspat Bay analysis of the shoreline erosion, Delaware Bay, New Jersey. PhD thesis. Rutgers University, New Brunswick.Google Scholar
Price, F. 2006. Quantification, Analysis, and Management of Intracoastal Waterway Channel Margin Erosion in the Guana Tolomato Matanzas National Estuarine Research Reserve, Florida. National Estuarine Research Reserve Technical Report Series 2006:1.Google Scholar
Priestas, A. M. and Fagherazzi, S. 2011. Morphology and hydrodynamics of wave-cut gullies. Geomorphology 131 (1): 113.Google Scholar
Riffe, K. C., Henderson, S. M., and Mullarney, J. C. 2011. Wave dissipation by flexible vegetation. Geophysical Research Letters 38 (18): https://doi.org/10.1029/2011GL048773.Google Scholar
Schwimmer, R. A. 2001. Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, USA. Journal of Coastal Research 17 (3): 672683.Google Scholar
Schwimmer, R. A. and Pizzuto, J. E. 2000. A model for the evolution of marsh shorelines. Journal of Sedimentary Research 70 (5): 10261035.Google Scholar
Selby, M. J. 1993. Hillslope Materials and Processes. Oxford University Press.Google Scholar
Silliman, B. R., Van de Koppel, J., McCoy, M. W., Diller, J., Kasozi, G. N., Earl, K., Adams, P. N., and Zimmerman, A. R. 2012. Degradation and resilience in Louisiana salt marshes after the BP–Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the USA, 109 (28): 1123411239.Google Scholar
Silinski, A., Heuner, M., Schoelynck, J., Puijalon, S., Schroder, U., Fuchs, E., Troch, P., Bouma, T. J., Meire, P., and Temmerman, S. 2015. Effects of wind waves versus ship waves on tidal marsh plants: A flume study on different life stages of Scirpus maritimus. PLoS ONE 10(3): e0118687.Google Scholar
Smith, S. M. 2009. Multi-decadal changes in salt marshes of Cape Cod, MA: Photographic analyses of vegetation loss, species shifts, and geomorphic change. Northeastern Naturalist 16(2): 183208.Google Scholar
Smith, S. M. 2015. Vegetation change in salt marshes of Cape Cod national seashore (Massachusetts, USA) between 1984 and 2013. Wetlands, 35(1): 127136.Google Scholar
Smith, J. A. M. 2013. The role of Phragmites australis in mediating inland salt marsh migration in a mid-Atlantic estuary. PLoS ONE 8(5): e65091.doi:10.1371/journal.pone.0065091.Google Scholar
Sorensen, R. M. 1973. Water waves produced by ships. Journal of the Waterways, Harbors and Coastal Engineering Division, 99(2), 245256.Google Scholar
Spencer, T., Moller, I., Rupprecht, F., Bouma, T. J., van Wesenbeeck, B. K., Kudella, M., Paul, M., et al. 2015. Salt marsh surface survives true-to-scale simulated storm surges. Earth Surface Processes and Landforms 41(4): 543552.Google Scholar
Suzuki, T. 2011. Wave dissipation over vegetation fields. PhD thesis. Delft University of Technology, Netherlands.Google Scholar
Swisher, M. 1982. The rates and causes of coastal erosion around a transgressive coastal lagoon, Rehoboth Bay, Delaware. MA thesis. University of Delaware, Newark.Google Scholar
Temmerman, S., Meire, P., Bouma, T., Herman, P. M. J., Ysebaert, T., and  De Vriend, H. J.. 2013. Ecosystem-based coastal defence in the face of global changeNature 5047983Google Scholar
Thorne, C. R. and Tovey, N. K. 1981. Stability of composite river banks. Earth Surface Processes and Landforms 6 (5): 469484.CrossRefGoogle Scholar
Tonelli, M., Fagherazzi, S., and Petti, M. 2010. Modeling wave impact on salt marsh boundaries. Journal of Geophysical Research: Oceans 115 (C9). https://doi.org/10.1029/2009JC006026.Google Scholar
Trosclair, K. J. 2013. Wave transformation at a saltmarsh edge and resulting edge erosion: observation and modeling. PhD thesis, University of New Orleans Theses and Dissertations, Paper 1777.Google Scholar
Tuan, Q. T. and Oumeraci, H. 2012. Numerical modelling of wave overtopping-induced erosion of grassed inner sea-dike slopes. Natural Hazards 63 (2): 417447.Google Scholar
Valiela, I. and Teal, J. M. 1979. The nitrogen budget of a salt marsh ecosystem. Nature 280 (5724): 652656.CrossRefGoogle Scholar
Van de Koppel, J., Van der Wal, D., Bakker, J. P., and Herman, P. M. J. 2005. Self-organization and vegetation collapse in salt marsh ecosytems. The American Naturalist 165 (1): E112.CrossRefGoogle Scholar
Van der Meer, J. W., Verheij, H. J., Lindenberg, J., Van Hoven, A., and Hoffmans, G. J. C. M. 2007. Wave overtopping and strenght of inner slopes of dikes. Tech. rep. 05i028. in Dutch. WL|Delft Hydraulics, Geodelft.Google Scholar
Van Der Wal, Z.De Graaf, G., and  Lasthuizen, K. 2008. What’s valued most similarities and differences between the organizational values of the public and private sector? Public Administration 86465482.Google Scholar
Van Eerdt, M. M. 1985. Salt marsh cliff stability in the Oosterschelde. Earth Surface Processes and Landforms 10 (2): 95106.Google Scholar
Van Eerdt, M. M. 1985. The influence of vegetation on erosion and accretion in salt marshes of the Oosterschelde, The Netherlands. Vegetation 62 (1–3): 367373.Google Scholar
Watson, E. B., Oczkowski, A. J., Wigand, C., Hanson, A. R., Dawey, E. W., Crosby, S. C., Johnson, R. L., and Andrews, H. M. 2014. Nutrient enrichment and precipitation changes do not enhance resiliency of salt marshs to sea level rise in the Northeastern U.S. Climatic Change 125: 501509.Google Scholar
Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H. -R 2005. Changes in tropical cyclone number, duration and intensity in a warming environment, Science, 309(5742): 18441846.Google Scholar
Weston, N. B. 2014. Declining sediments and rising seas: an unfortunate convergence for tidal wetlands. Estuaries and Coasts 37: 123.Google Scholar
Wilson, C. A. and Allison, M. A. 2008. An equilibrium profile model for retreating marsh shorelines in southeast Louisiana. Estuarine, Coastal and Shelf Science 80 (4): 483494.Google Scholar
Winterwerp, J. C. and Van Kesteren, W. G. M. 2004. Introduction to the physics of cohesive sediment dynamics in the marine environment. Ed. by Van Loon, T.. Vol. 56. Developments in Sedimentology. Elsevier, Amsterdam, the Netherlands.Google Scholar
Winterwerp, J. C., Kesteren, W. G. M., Prooijen, B. C., and Jacobs, W. 2012. A conceptual framework for shear flow–induced erosion of soft cohesive sediment beds. Journal of Geophysical Research: Oceans 117 (C10): https://doi.org/10.1029/2012JC008072.Google Scholar
Young, I. R. and Verhagen, L. A. 1996. The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency. Coastal Engineering 29 (1):4778.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×