Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T12:06:31.864Z Has data issue: false hasContentIssue false

11 - The Havers–Halberg Oscillation and Bone Metabolism

Published online by Cambridge University Press:  25 March 2017

Christopher J. Percival
Affiliation:
University of Calgary
Joan T. Richtsmeier
Affiliation:
Pennsylvania State University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiello, L. C. and Wheeler, P. (1995). The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Current Anthropology, 36(2), 199221.Google Scholar
Allen, M. J. (2008). Biochemical markers of bone metabolism in animals: uses and limitations. Veterinary Clinical Pathology, 32(3), 101113.Google Scholar
Allison, S. J., Baldock, P. A. and Herzog, H. (2007). The control of bone remodeling by neuropeptide Y receptors. Peptides, 28, 320325.Google Scholar
Amling, M., Pogoda, P., Beil, F. T., et al. (2001). Central control of bone mass: brainstorming of the skeleton. Advances in Experimental Medicine & Biology, 496, 8594.Google Scholar
Appenzeller, O., Gunga, H. C., Qualls, C., et al. (2005). A hypothesis: autonomic rhythms are reflected in growth lines of teeth in humans and extinct archosaurs. Autonomic Neuroscience, 117, 115119.CrossRefGoogle ScholarPubMed
Asper, H. (1916). Uber die “Braune Retzius” sche Parallelstreifung im Schmelz der Menschlichen Zahne, Schweiz. Vierteljahrschrift Zahnheilk, 26, 277314.Google Scholar
Bajayo, A., Bar, A., Denes, A., et al. (2012). Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proceedings of the National Academy of Sciences, 109, 1545515460.Google Scholar
Berendsen, A. D. and Olsen, B. R. (2014). Osteoblast–adipocyte lineage plasticity in tissue development, maintenance and pathology. Cellular and Molecular Life Sciences, 71, 493497.Google Scholar
Biewener, A. A. (1982). Bone strength in small mammals and bipedal birds: do safety factors change with body size? Journal of Experimental Biology, 98, 289301.CrossRefGoogle ScholarPubMed
Binkley, N. C., Krueger, D. C., Engelke, J. A., Foley, A. L., and Suttie, J. W. (2000). Vitamin K supplementation reduces serum concentrations of under-γ-carboxylated osteocalcin in healthy young and elderly adults. American Journal of Clinical Nutrition, 72(6) , 15231528.Google Scholar
Boyde, A. (1979). Carbonate concentration, crystal centers, core dissolution, caries, cross striations, circadian rhythms, and compositional contrasts in the SEM. Journal of Dental Research, 58(B), 981983.Google Scholar
Bromage, T. G. and Janal, M. N. (2014). The Havers–Halberg Oscillation regulates primate tissue and organ masses across the life history continuum. Biological Journal of the Linnean Society, 112(4), 649656.Google Scholar
Bromage, T. G., Lacruz, R., Hogg, R. T., et al. (2009). Lamellar bone reconciles enamel rhythms, body size, and organismal life history. Calcified Tissue International, 84, 388404.CrossRefGoogle ScholarPubMed
Bromage, T. G., Juwayeyi, Y. M., Smolyar, I., et al. (2011). Enamel-calibrated lamellar bone reveals long period growth rate variability in humans. Cells Tissues Organs, 194(2–4), 124130.Google Scholar
Bromage, T. G., Hogg, R. T., Lacruz, R. S. and Hou, C. (2012). Primate enamel evinces long period biological timing and regulation of life history. Journal of Theoretical Biology, 305, 131144.Google Scholar
Bromage, T. G., Juwayeyi, Y. M., Katris, J.A., et al. (2015). The scaling of human osteocyte lacuna density with body size and metabolism. Comptes Rendus Palevol, 15(1), 3239.CrossRefGoogle Scholar
Bromage, T. G., Idaghdour, Y., Lacruz, R. S., et al. (2016). The swine plasma metabolome chronicles “many days” biological timing and functions linked to growth. PLOS ONE, 11, e0145919.Google Scholar
Brown, M. F., Gratton, T. P. and Stuart, J. A. (2007). Metabolic rate does not scale with body mass in cultured mammalian cells. American Journal of Physiology – Regulatory, Integrative, and Comparative Physiology, 292, R2115R2121.Google Scholar
Christiansen, P. (2001). Mass allometry of the appendicular skeleton in terrestrial mammals. Journal of Morphology, 251(2), 195209.Google Scholar
Confavreaux, C. B., Levine, R. L. and Karsenty, G. (2009). A paradigm of integrative physiology, the crosstalk between bone and energy metabolisms. Molecular and Cellular Endocrinology, 310, 2129.Google Scholar
Crippa, L., Ferro, E., Melloni, I., et al. (1992 ). Echocardiographic parameters and indices in the normal Beagle dog. Laboratory Animals, 26, 190195.Google Scholar
Dean, M. C. (2000). Incremental markings in enamel and dentine: what they can tell us about the way teeth grow. In: Teaford, M. F., Smith, M. M. and Ferguson, M. W. J. (eds.) Development, Function, and Evolution of Teeth. Cambridge: Cambridge University Press, pp. 119130.Google Scholar
Dean, M. C. and Scandrett, A. E. (1995). Rates of dentine mineralization in permanent human teeth. International Journal of Osteoarchaeology, 5, 349358.Google Scholar
Denes, A., Boldogkoi, Z., Uhereczky, G., et al. (2005). Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience, 134, 947963.CrossRefGoogle ScholarPubMed
Driessler, F. and Baldock, P. A. (2010). Hypothalamic regulation of bone. Journal of Molecular Endocrinology, 45, 175181.Google Scholar
Ducy, P. (2011). The role of osteocalcin in the endocrine cross-talk between bone remodelling and energy metabolism. Diabetologia, 54(6), 12911297.Google Scholar
Ducy, P., Desbois, C., Boyce, B., et al. (1996). Increased bone formation in osteocalcin-deficient mice. Nature, 382(6590), 448452.Google Scholar
Ducy, P., Amling, M., Takeda, S., et al. (2000a). Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell, 100(2), 197207.Google Scholar
Ducy, P., Schinke, T. and Karsenty, G. (2000b). The osteoblast: a sophisticated fibroblast under central surveillance. Science, 289(5484), 15011504.Google Scholar
Elefteriou, F., Campbell, P. and Ma, Y. (2014). Control of bone remodeling by the peripheral sympathetic nervous system. Calcified Tissue International, 94, 140151.Google Scholar
Ferron, M. and Lacombe, J. (2014). Regulation of energy metabolism by the skeleton: osteocalcin and beyond. Archives of Biochemistry and Biophysics, 56(1), 137146.Google Scholar
Fu, L., Patel, M. S., Bradley, A., Wagner, E. F. and Karsenty, G. (2005). The molecular clock mediates leptin-regulated bone formation. Cell, 122(5), 803815.Google Scholar
Halberg, F. (1969). Chronobiology. Annual Review of Physiology, 31, 675726.Google Scholar
Hamrick, M. W. (2004). Leptin, bone mass, and the thrifty phenotype. Journal of Bone and Mineral Research, 19(10), 16071611.Google Scholar
Hamrick, M. W. and Ferrari, S. L. (2008). Leptin and the sympathetic connection of fat to bone. Osteoporosis International, 19, 905912.Google Scholar
Hamrick, M. W., Della Fera, M. A., Choi, Y., et al. (2005). Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. Journal of Bone and Mineral Research, 20(6), 9941001.Google Scholar
Hamrick, M. W., Della Fera, M. A., Choi, Y., et al. (2007). Injections of leptin into rat ventromedial hypothalamus increase adipose apoptosis in peripheral fat and in bone marrow. Cell and Tissue Research, 327, 113141.Google Scholar
Harvey, P. H. and Clutton-Brock, T. H. (1985). Life history variation in primates. Evolution, 39, 559581.Google Scholar
Havill, L. M., Rogers, J., Cox, L. A. and Mahaney, M. C. (2006). QTL with pleiotropic effects on serum levels of bone-specific alkaline phosphatase and osteocalcin maps to the baboon ortholog of human chromosome 6p23–21.3. Journal of Bone and Mineral Research, 21(12), 18881896.Google Scholar
Hinoi, E., Gao, N., Jung, D. Y., et al. (2008). The sympathetic tone mediates leptin’s inhibition of insulin secretion by modulating osteocalcin bioactivity. Journal of Cell Biology, 183, 12351242.CrossRefGoogle ScholarPubMed
Hogg, R. T. (2010). Dental microstructure and growth in the cebid primates. PhD Dissertation, City University of New York.Google Scholar
Hogg, R. T., Godfrey, L. R., Schwartz, G. T., et al. (2015). Lemur biorhythms and life history evolution. PLOS ONE, 10, e0134210.CrossRefGoogle ScholarPubMed
Idelevich, A., Sato, K. and Baron, R. (2013). What are the effects of leptin on bone and where are they exerted? Journal of Bone and Mineral Research, 28(1), 1821.CrossRefGoogle Scholar
Isler, K. and Van Schaik, C. P. (2012). Allomaternal care, life history and brain size evolution in mammals. Journal of Human Evolution, 63, 5263.Google Scholar
Karsenty, G. (2001). Central control of bone formation. Advances in Nephrology, 31, 119133.Google Scholar
Karsenty, G. (2006). Convergence between bone and energy homeostasis: leptin regulation of bone mass. Cell Metabolism, 4, 341348.Google Scholar
Kilgallon, C., Flach, E., Boardman, W., et al. (2008). Analysis of biochemical markers of bone metabolism in Asian elephants (Elephas maximus). Journal of Zoo and Wildlife Medicine, 39(4), 527536.Google Scholar
Kleiber, M. (1947). Body size and metabolic rate. Physiological Reviews, 27(4), 511541.Google Scholar
Lacruz, R. S., Dean, M. C., Ramirez-Rozzi, F. and Bromage, T. G. (2008). Megadontia, striae periodicity and patterns of enamel secretion in Plio–Pleistocene fossil hominins. Journal of Anatomy, 213, 148158.Google Scholar
Lacruz, R. S., Hacia, J. G., Bromage, T. G., et al. (2012). The circadian clock modulates enamel development. Journal of Biological Rhythms, 27(3), 237245.Google Scholar
Lee, A. H., Huttenlocker, A. K., Padian, K. and Woodward, H. N. (2013). Analysis of growth rates. In: Padian, K. and Lamm, E. T. (eds.) Bone Histology of Fossil Tetrapods. Berkeley, CA: University of California Press, pp. 217252.Google Scholar
Lee, N. K. and Karsenty, G. (2008). Reciprocal regulation of bone and energy metabolism. Trends in Endocrinology and Metabolism, 19(5), 161166.Google Scholar
Lee, N. K., Sowa, H., Hinoi, E., et al. (2007). Endocrine regulation of energy metabolism by the skeleton. Cell, 130, 456469.Google Scholar
Leigh, S. R. (2004). Brain growth, life history, and cognition in primate and human evolution. American Journal of Primatology, 62, 139164.Google Scholar
Leigh, S. R. (2012). Brain size growth and life history in human evolution. Evolutionary Biology, 39, 587599.Google Scholar
Lepage, O. M., Marcoux, M. and Tremblay, A. (1990). Serum osteocalcin or bone Gla-protein, a biochemical marker for bone metabolism in horses: differences in serum levels with age. Canadian Journal of Veterinary Research, 54, 223226.Google Scholar
Lian, J., Stewart, C., Puchacz, E., et al. (1989). Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. Biochemistry, 86, 11431147.Google Scholar
Malinowski, K., Christensen, R. A., Hafs, H. D. and Scanes, C. G. (1996). Age and breed differences in thyroid hormones, insulin-like growth factor (IGF)-I and IGF binding proteins in female horses. Journal of Animal Science, 74, 19361942.Google Scholar
Martinez, C., Gonzalez, E., Garcia, R. S., et al. (2010). Effects on body mass of laboratory rats after ingestion of drinking water with sucrose, fructose, aspartame, and sucralose additives. The Open Obesity Journal, 2010(2), 116124.Google Scholar
Okada, M. (1943). Hard tissues of animal body – highly interesting details of Nippon studies in periodic patterns of hard tissue are described. Shanghai Evening Post, Medical Edition, 43, 1531.Google Scholar
Okada, M. and Mimura, T. (1940). Zur Physiologie und Pharmakologie der Hartgewebe. IV. Mitteilung: Tagesrhythmus in der Knochenlamellen- bildung. Proceedings of the Japan Pharmacological Society, 9597.Google Scholar
Poggi, M., Bastelica, D., Gual, P., et al. (2007). C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet. Diabetologia, 50, 12671276.Google Scholar
Pontzer, H. (2012). Ecological energetics in early Homo. Current Anthropology, 53, S346–358.CrossRefGoogle Scholar
Rawson, M. J., Cornelissen, G., Holte, J., et al. (2000). Circadian and circaseptan components of blood pressure and heart rate during depression. Scripta Medica, 73, 117124.Google Scholar
Reiches, M. W., Ellison, P. T., Lipson, S. F., et al. (2009). Pooled energy budget and human life history. American Journal of Human Biology, 21, 421429.Google Scholar
Richman, C., Baylink, D. J., Lang, K., Dony, C. and Mohan, S. (1999). Recombinant human insulin-like growth factor-binding protein-5 stimulates bone formation parameters in vitro and in vivo. Endocrinology, 140(10), 46994705.Google Scholar
Roenneberg, T. and Morse, D. (1993). Two circadian oscillators in one cell. Nature, 362, 362364.Google Scholar
Rubin, J. and Rubin, C. (2008). Review: Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones. Journal of Bone and Mineral Research, 23(9), 13691371.Google Scholar
Sample, S. J., Behan, M., Smith, L., et al. (2008). Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones. Journal of Bone and Mineral Research, 23(9), 13721381.Google Scholar
Schultz, A. H. (1960). Age changes in primates and their modification in man. In: Tanner, J. M. (ed.) Human Growth. New York, NY: Pergamon, pp. 120.Google Scholar
Schwartz, G. T. (2012). Growth, development, and life history throughout the evolution of Homo. Current Anthropology, 53(S6), S395S408.Google Scholar
Shi, Y., Yadav, V. K., Suda, N., et al. (2008). Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proceedings of the National Academy of Sciences, 105(51), 2052920533.Google Scholar
Shi, Y., Oury, F., Yadav, V. K., et al. (2010). Signaling through M3 muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metabolism, 11, 231238.Google Scholar
Shinoda, H. and Okada, M. (1988). Diurnal rhythms in the formation of lamellar bone in young growing animals. Proceedings of the Japan Academy, 64(Series B), 307310.Google Scholar
Sibly, R. M. and Brown, J. H. (2007). Effects of body size and lifestyle on evolution of mammal life histories. Proceedings of the National Academy of Sciences, 104(45), 1770717712.Google Scholar
Smith, T. M. (2008). Incremental dental development: methods and applications in hominoid evolutionary studies. Journal of Human Evolution, 54, 205224.Google Scholar
Srivastava, A. K., Bhattacharyya, S., Castillo, G., et al. (2000). Development and application of a serum C-telopeptide and osteocalcin assay to measure bone turnover in an ovariectomized rat model. Calcified Tissue International, 66, 435442.CrossRefGoogle Scholar
Steppan, C. M., Crawford, D. T., Chidsey-Frink, K. L., Ke, H. and Swick, A. G. (2000). Leptin is a potent stimulator of bone growth in ob/ob mice. Peptides, 92(1–3), 7378.Google Scholar
Tafforeau, P., Bentaleb, I., Jaeger, J. J. and Martin, C. (2007). Nature of laminations and mineralization in rhinoceros enamel using histology and X-ray synchrotron microtomography: potential implications for palaeoenvironmental isotopic studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 246, 206227.Google Scholar
Takeda, S. (2008). Central control of bone remodeling. Journal of Neuroendocrinology, 20(6), 802807.Google Scholar
Takeda, S. and Karsenty, G. (2008). Molecular bases of the sympathetic regulation of bone mass. Bone, 42, 837840.Google Scholar
Takeda, S., Elefteriou, F., Levasseur, R., et al. (2002). Leptin regulates bone formation via the sympathetic nervous system. Cell, 111(3), 305317.Google Scholar
Trumble, T. N., Brown, M. P., Merritt, K. A., et al. (2008). Joint dependent concentrations of bone alkaline phosphatase in serum and synovial fluids of horses with osteochondral injury: an analytical and clinical validation. Osteoarthritis and Cartilage, 16(7), 779786.Google Scholar
Turner, R. T., Kalra, S. P., Wong, C. P., et al. (2013). Peripheral leptin regulates bone formation. Journal of Bone and Mineral Research, 28(1), 2234.CrossRefGoogle ScholarPubMed
Ueyama, T., Krout, K., Nguyen, X. and Karpitskiy, A. (1999). Suprachiasmatic nucleus: a central autonomic clock. Nature Neuroscience, 2, 10511053.Google Scholar
Woodward, H. N., Padian, K. and Lee, A. H. (2013). Skeletochronology. In: Padian, K. and Lamm, E. T. (eds.) Bone Histology of Fossil Tetrapods. Berkeley, CA: University of California Press, pp. 195216.Google Scholar
Wu, J. Y., Cornelissen, G., Tarquini, B., et al. (1990). Circaseptan and circannual modulation of circadian rhythms in neonatal blood pressure and heart rate. Progress in Clinical and Biological Research, 341A, 643652.Google Scholar
Zvonic, S., Ptitsyn, A. A., Kilroy, G., et al. (2007). Circadian oscillation of gene expression in murine calvarial bone. Journal of Bone and Mineral Research, 22(3), 357365.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×