Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T00:37:49.162Z Has data issue: false hasContentIssue false

Part III - Case Studies

Published online by Cambridge University Press:  27 October 2016

Judith S. Weis
Affiliation:
Rutgers University, New Jersey
Daniel Sol
Affiliation:
National Spanish Research Council (CSIC)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

a l'Allemand, S.L. and Witte, V. (2010). A sophisticated, modular communication contributes to ecological dominance in the invasive ant Anoplolepis gracilipes. Biological Invasions, 12, 35513561.CrossRefGoogle Scholar
Abbott, K.L. (2005). Supercolonies of the invasive yellow crazy ant, Anoplolepis gracilipes on an oceanic island: forager activity patterns, density and biomass. Insectes Sociaux, 52, 266273.CrossRefGoogle Scholar
Abbott, K.L., Greaves, S.N.J., Ritchie, P.A. and Lester, P.J. (2007). Behaviourally and genetically distinct populations of an invasive ant provide insight into invasion history and impacts on a tropical ant community. Biological Invasions, 9, 453463.CrossRefGoogle Scholar
Abril, S. and Gomez, C. (2010). Aggressive behavior of the two European Argentine ant supercolonies (Hymenoptera: Formicidae) towards displaced native ant species of the northeastern Iberian Peninsula. Myrmecological News, 14, 99106.Google Scholar
Alder, P.M. and Silverman, J. (2005). Effects of interspecific competition between two urban ant species, Linepithema humile and Monomorium minimum, on toxic bait performance. Journal of Economic Entomology, 98, 493501.CrossRefGoogle ScholarPubMed
Ascunce, M.S., Yang, C-C., Oakey, J., et al. (2011). Global invasion history of the fire ant, Solenopsis invicta. Science, 331, 10661068.Google ScholarPubMed
Bednar, D.M. and Silverman, J. (2011). Use of termites, Reticulitermes virginicus, as a springboard in the invasive success of a predatory ant, Pachycondyla (=Brachyponera) chinensis. Insectes Sociaux, 58, 459467.CrossRefGoogle Scholar
Bednar, D.M., Shik, J.Z. and Silverman, J. (2013). Prey handling performance facilitates competitive dominance of an invasive over native keystone ant. Behavioral Ecology, 24, 13121319.CrossRefGoogle Scholar
Bertelsmeier, C. and Courchamp, F. (2014). Future ant invasions in France. Environmental Conservation, 41, 217228.CrossRefGoogle Scholar
Bertelsmeier, C., Luque, G.M. and Courchamp, F. (2012). Global warming may freeze the invasion of big-headed ants. Biological Invasions, 15, 15611572.CrossRefGoogle Scholar
Bertelsmeier, C., Guenard, B. and Courchamp, F. (2013). Climate change may boost the invasion of the Asian needle ant. PLoS ONE, 8(10), e75438. doi:10.1371/journal.pone.0075438.CrossRefGoogle ScholarPubMed
Bjoerkman-Chiswell, B.T., van Wilgenburg, E., Thomas, M.L., Swearer, S.E. and Elgar, M.A. (2008). Absence of aggression but not nestmate recognition in an Australian population of the Argentine ant Linepithema humile. Insectes Sociaux, 55, 207212.CrossRefGoogle Scholar
Blight, O., Provost, E., Renucci, M., Tirard, A. and Orgeas, J. (2010). A native ant armed to limit the spread of the Argentine ant. Biological Invasions, 12, 37853793.CrossRefGoogle Scholar
Blight, O., Berville, L., Vogel, V., et al. (2012). Variation in the level of aggression, chemical and genetic distance among three supercolonies of the Argentine ant in Europe. Molecular Ecology, 21, 41064121.CrossRefGoogle ScholarPubMed
Bradley, B.A., Blumenthal, D.M., Wilcove, D.S. and Ziska, L.H. (2010). Predicting plant invasions in an era of global change. Trends in Ecology and Evolution, 25, 310318.CrossRefGoogle Scholar
Brandt, M., van Wilgenburg, E., Sulc, R., Shea, K.J. and Tsutsui, N.D. (2009). The scent of supercolonies: the discovery, synthesis and behavioural verification of ant colony recognition cues. BMC Biology, 7, 71.CrossRefGoogle ScholarPubMed
Brightwell, R.J. and Silverman, J. (2007). Argentine ant foraging activity and interspecific competition in complete vs. queenless and broodless colonies. Insectes Sociaux, 54, 329333.CrossRefGoogle Scholar
Brightwell, R.J. and Silverman, J. (2011). The Argentine ant persists through unfavorable winters via a mutualism facilitated by a native tree. Environmental Entomology, 40, 10191026.CrossRefGoogle Scholar
Brightwell, R.J., Labadie, P.L. and Silverman, J. (2010). Northward expansion of the invasive Argentine ant, Linepithema humile (Hymenoptera: Formicidae) in the eastern U.S. is constrained by winter soil temperatures. Environmental Entomology, 39, 16591665.CrossRefGoogle ScholarPubMed
Buckley, R.C. (1987). Interactions involving plants, homoptera, and ants. Annual Review of Ecology and Systematics, 18, 111135.CrossRefGoogle Scholar
Buczkowski, G. (2010). Extreme life history plasticity and the evolution of invasive characteristics in a native ant. Biological Invasions, 12, 33433349.CrossRefGoogle Scholar
Buczkowski, G. and Bennett, G.W. (2006). Dispersed central-place foraging in the polydomous odorous house ant, Tapinoma sessile as revealed by a protein marker. Insectes Sociaux, 53, 282290.CrossRefGoogle Scholar
Buczkowski, G. and Bennett, G.W. (2008). Aggressive interactions between the introduced Argentine ant, Linepithema humile and the native odorous house ant, Tapinoma sessile. Biological Invasions, 10, 10011011.CrossRefGoogle Scholar
Buczkowski, G. and Kruskelnycky, P. (2012). The odorous house ant, Tapinoma sessile (Hymenoptera: Formicidae), as a new temperate-origin invader. Myrmecological News, 16, 6166.Google Scholar
Buczkowski, G. and Silverman, J. (2005). Context-dependent nestmate discrimination and the effect of action thresholds on exogenous cue recognition in the Argentine ant. Animal Behaviour, 69, 741749.CrossRefGoogle Scholar
Buczkowski, G. and Silverman, J. (2006). Geographical variation in Argentine ant aggression behavior mediated by environmentally derived nestmate recognition cues. Animal Behaviour, 71, 327335.CrossRefGoogle Scholar
Buczkowski, G., Vargo, E. and Silverman, J. (2004). The diminutive supercolony: the Argentine ants of the southeastern United States. Molecular Ecology, 13, 22352242.CrossRefGoogle ScholarPubMed
Buczkowski, G., Kumar, R., Suib, S.L. and Silverman, J. (2005). Diet-related modification of cuticular hydrocarbon profiles of the Argentine ant, Linepithema humile, diminishes intercolony aggression. Journal of Chemical Ecology, 31, 829843.CrossRefGoogle ScholarPubMed
Butchart, S.H.M., Walpole, M., Collen, B., et al. (2010). Global biodiversity: indicators of recent declines. Science, 328, 11641168.CrossRefGoogle ScholarPubMed
Carpintero, S. and Reyes-Lopez, J. (2008). The role of competitive dominance in the invasive ability of the Argentine ant (Linepithema humile). Biological Invasions, 10, 2535.CrossRefGoogle Scholar
Cassill, D.L., Vo, K. and Becker, B. (2008). Young fire ant workers feign death and survive aggressive neighbors. Naturwissenschaften, 95, 617624.CrossRefGoogle ScholarPubMed
Cerda, X., Retana, J. and Cros, S. (1997). Thermal disruption of transitive hierarchies in Mediterranean ant communities. Journal of Animal Ecology, 66, 363374.CrossRefGoogle Scholar
Chapple, D.G., Simmonds, S.M. and Wong, B.M. (2012). Can behavioral and personality traits influence the success of unintentional species introductions? Trends in Ecology and Evolution, 27, 5764.CrossRefGoogle ScholarPubMed
Coppler, L.B., Murphy, J.F. and Eubanks, M.D. (2007). Red imported fire ants (Hymenoptera: Formicidae) increase the abundance of aphids in tomato. Florida Entomologist, 90, 419425.CrossRefGoogle Scholar
Cremer, S., Ugelvig, L.V., Drijfhout, F.P., et al. (2008). The evolution of invasiveness in garden ants. PLoS ONE, 3(12), e3838.CrossRefGoogle ScholarPubMed
Crowder, D.W. and Snyder, W.E. (2010). Eating their way to the top? Mechanisms underlying the success of invasive insect generalist predators. Biological Invasions, 12, 28572876.CrossRefGoogle Scholar
Czaczkes, T.J., Vollet-Neto, A. and Ratnieks, F.L.W. (2013). Prey escorting behavior and possible convergent evolution of foraging recruitment mechanisms in an invasive ant. Behavioral Ecology, 24, 11771184.CrossRefGoogle Scholar
Daane, K.M., Sime, K.R., Fallon, J. and Cooper, M.L. (2007). Impacts of Argentine ants on mealybugs and their natural enemies in California's coastal vineyards. Ecological Entomology, 32, 583596.CrossRefGoogle Scholar
Davidson, D.W., Cook, S.C., Snelling, R.R. and Chua, T.H. (2003). Explaining the abundance of ants in lowland tropical rainforest canopies. Science, 300, 969972.CrossRefGoogle ScholarPubMed
Dejean, A., Kenne, M. and Moreau, C.S. (2007). Predatory abilities favor the success of the invasive ant Pheidole megacephala in an introduced area. Journal of Applied Entomology, 131, 625629.CrossRefGoogle Scholar
Dejean, A., Moreau, C.S., Kenne, M. and Leponce, M. (2008). The raiding success of Pheidole megacephala on other ants in both its native and introduced ranges. Comptes Rendus Biologies, 331, 631635.CrossRefGoogle ScholarPubMed
Deneubourg, J.-L., Aron, S., Goss, S. and Pasteels, J.M. (1990). The self-organizing exploratory pattern of the Argentine ant. Journal of Insect Behavior, 3, 159168.CrossRefGoogle Scholar
Drescher, J., Bluthgen, N., Schmitt, T., Buhler, J. and Feldhaar, H. (2010). Societies drifting apart? behavioural, genetic and chemical differentiation between supercolonies in the yellow crazy ant Anoplolepis gracilipes. PLoS ONE, 5(10), e13581. doi:10.1371/journal.pone.0013581CrossRefGoogle ScholarPubMed
Drescher, J, Feldhaar, H. and Bluthgen, N. (2011). Interspecific aggression and resource monopolization of the invasive ant Anoplolepis gracilipes in Malaysian Borneo. Biotropica, 43, 9399.CrossRefGoogle Scholar
Dussutour, A., Nicolis, S.C., Shephard, G., Beekman, M. and Sumpter, D.J.T. (2009). The role of multiple pheromones in food recruitment by ants. The Journal of Experimental Biology, 212, 23372348.CrossRefGoogle ScholarPubMed
Errard, C., Delabie, J, Jourdan, H. and Hefetz, A. (2005). Intercontinental chemical variation in the invasive ant Wasmannia auropunctata (Roger) (Hymenoptera Formicidae): a key to the invasive success of a tramp species. Naturwissenschaften, 92, 319323.CrossRefGoogle Scholar
Espadaler, X., Rey, S. and Bernal, V. (2004). Queen number in a supercolony of the invasive garden ant, Lasius neglectus. Insectes Sociaux, 51, 232238.CrossRefGoogle Scholar
Flanagan, T.P., Pinter-Wollman, N.M., Moses, M.E. and Gordon, D.M. (2013). Fast and flexible: Argentine ants recruit from nearby trails. PLoS ONE, 8, e70888.CrossRefGoogle ScholarPubMed
Foucaud, J., Orivel, J., Fournier, D., et al. (2009). Reproductive system, social organization, human disturbance and ecological dominance in native populations of the little fire ant, Wasmannia auropunctata. Molecular Ecology, 18, 50595073.CrossRefGoogle ScholarPubMed
Fournier, D., de Biseau, J.-C. and Aron, S. (2009). Genetics, behaviour and chemical recognition of the invading ant Pheidole megacephala. Molecular Ecology, 18, 186199.CrossRefGoogle ScholarPubMed
Garnas, J.R., Drummond, F.A. and Groden, E. (2007). Intercolony aggression within and among local populations of the invasive ant, Myrmica rubra (Hymenoptera: Formicidae), in coastal Maine. Environmental Entomology, 36, 105113.CrossRefGoogle ScholarPubMed
Giraud, T., Pedersen, J.S. and Keller, L. (2002). Evolution of supercolonies: the Argentine ants of southern Europe. Proceedings of the National Academy of Sciences of the Unites States of America, 99, 60756079.CrossRefGoogle ScholarPubMed
Gordon, D.M. and Heller, N.E. (2013). The invasive Argentine ant Linepithema humile (Hymenoptera: Formicidae) in Northern California reserves: from foraging behavior to local spread. Myrmecological News, 19, 103110.Google Scholar
Gottwald, W.H. (1995). Army Ants: The Biology of Social Predation. Ithaca, NY: Cornell University Press.Google Scholar
Groden, E., Drummond, F.A., Garnas, J. and Franceour, A. (2005). Distribution of an invasive ant, Myrmica rubra (Hymenoptera: Formicidae), in Maine. Journal of Economic Entomology, 98, 17741784.CrossRefGoogle ScholarPubMed
Grover, C.D., Kay, A.D., Monson, J.A., Marsh, T.C. and Holway, D.A. (2007). Linking nutrition and behavioral dominance: carbohydrate scarcity limits aggression and activity in Argentine ants. Proceedings of the Royal Society: Biological Sciences B, 274, 29512957.Google ScholarPubMed
Gruber, M.A.M., Hoffmann, B.D., Ritchie, P.A. and Lester, P.J. (2012). Recent behavioural and population genetic divergence of an invasive ant in a novel environment. Diversity and Distributions, 18, 323333.CrossRefGoogle Scholar
Guenard, B. and Dunn, R.R. (2010). A new (old), invasive ant in the hardwood forests of eastern North America and its potentially widespread impacts. PLoS ONE, 5, e11614.CrossRefGoogle ScholarPubMed
Guenard, B. and Silverman, J. (2011). Tandem carrying, a new foraging strategy in ants: description, function and adaptive significance relative to other described foraging strategies. Naturwissenschaften, 98, 651659.CrossRefGoogle ScholarPubMed
Harris, R. and Barker, G. (2007). Relative risk of invasive ants (Hymenoptera: Formicidae) establishing in New Zealand invasive social insect. New Zealand Journal of Zoology, 34, 161178.CrossRefGoogle Scholar
Hee, J.J., Holway, D.A., Suarez, A.V. and Case, T.J. (2000). Role of propagule size in the success of incipient colonies of the invasive Argentine ant. Conservation Biology, 14, 559563.CrossRefGoogle Scholar
Helantera, H., Strassmann, J.E., Carrillo, J. and Queller, D.C. (2009). Unicolonial ants: where do they come from, what are they and where are they going? Trends in Ecology and Evolution, 24, 341349.CrossRefGoogle ScholarPubMed
Heller, N.E. (2004). Colony structure in native and introduced populations of the invasive Argentine ant, Linepithema humile. Insectes Sociaux, 51, 378386.CrossRefGoogle Scholar
Heller, N.E., Ingram, K.K. and Gordon, D.M. (2008). Nest connectivity and colony structure in unicolonial Argentine ants. Insectes Sociaux, 55, 397403.CrossRefGoogle Scholar
Helms, K.R. (2013). Mutualisms between ants (Hymenoptera: Formicidae) and honeydew-producing insects: are they important in ant invasions? Myrmecological News, 18, 6171.Google Scholar
Helms, K.R. and Vinson, S.B. (2002). Widespread association of the invasive ant Solenopsis invicta with an invasive mealybug. Ecology, 83, 24252438.CrossRefGoogle Scholar
Helms, K.R. and Vinson, S.B. (2008). Plant resources and colony growth in an invasive ant: the importance of honeydew-producing Hemiptera in carbohydrate transfer across trophic levels. Environmental Entomology, 37, 487493.CrossRefGoogle Scholar
Hicks, B.J. (2012). How does Myrmica rubra (Hymenoptera: Formicidae) disperse in its native range? Record of male-only swarming flights from Newfoundland. Myrmecological News, 16, 3134.Google Scholar
Hoffmann, B.D. (2014). Quantification of supercolonial traits in the yellow crazy ant, Anoplolepis gracilipes. Journal of Insect Science, 14, 121.CrossRefGoogle ScholarPubMed
Hoffmann, B.D. and Saul, W.C. (2010). Yellow crazy ant (Anoplolepis gracilipes) invasions within undisturbed mainland Australian habitats: no support for biotic resistance hypothesis. Biological Invasions, 13, 30933108.CrossRefGoogle Scholar
Hölldobler, B. and Wilson, E. (1990). The Ants. Cambridge, MA: Belknap Press.CrossRefGoogle Scholar
Holway, D.A. (1999). Competitive mechanisms underlying the displacement of native ants by the invasive Argentine ant. Ecology, 80, 238251.CrossRefGoogle Scholar
Holway, D.A. and Case, T.J. (2000). Mechanisms of dispersed central-place foraging in polydomous colonies of the Argentine ant. Animal Behaviour, 59, 433441.CrossRefGoogle ScholarPubMed
Holway, D.A. and Case, T.J. (2001). Effects of colony-level variation on competitive ability in the invasive Argentine ant. Animal Behaviour, 61, 11811192.CrossRefGoogle Scholar
Holway, D.A. and Suarez, A.V. (1999). Animal behavior: an essential component of invasion biology. Trends in Ecology and Evolution, 14, 328330.CrossRefGoogle ScholarPubMed
Holway, D.A. and Suarez, A.V. (2004). Colony-structure variation and interspecific competitive ability in the invasive Argentine ant. Oecologia, 138, 216222.CrossRefGoogle ScholarPubMed
Holway, D.A., Suarez, A.V. and Case, T.J. (1998). Loss of intraspecific aggression in the success of a widespread invasive social insect. Science, 282, 949952.CrossRefGoogle ScholarPubMed
Holway, D.A., Lach, L., Suarez, A.V., Tsutsui, N.D. and Case, T.J. (2002). Causes and consequences of ant invasions. Annual Review of Ecology Evolution and Systematics, 33, 181233.CrossRefGoogle Scholar
Horn, K.C., Eubanks, M.D. and Siemann, E. (2013). The effect of diet and opponent size on aggressive interactions involving Caribbean crazy ants (Nylanderia fulva). PLoS ONE, 8(6), e66912.CrossRefGoogle ScholarPubMed
Howard, R.W. and Blomquist, G.J. (2005). Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50, 371393.CrossRefGoogle ScholarPubMed
Human, K.G. and Gordon, D.M. (1996). Exploitative and interference competition between the Argentine ant and native ant species. Oecologia, 105, 405412.CrossRefGoogle ScholarPubMed
Human, K.G. and Gordon, D.M. (1997). Effects of Argentine ants on invertebrate diversity in northern California. Conservation Biology, 11, 12421248.CrossRefGoogle Scholar
Human, K.G. and Gordon, D.M. (1999). Behavioral interactions of the invasive Argentine ant with native ant species. Insectes Sociaux, 46, 159163.CrossRefGoogle Scholar
Ingram, K.K. and Gordon, D.M. (2003). Genetic analysis of dispersal dynamics in an invading population of Argentine ants. Ecology, 84, 28322842.CrossRefGoogle Scholar
Jaquiéry, J., Vogel, V. and Keller, L. (2005). Multilevel genetic analyses of two supercolonies of the Argentine ant, Linepithema humile. Molecular Ecology, 14, 589598.CrossRefGoogle ScholarPubMed
Jandt, J.M., Bengston, S., Pinter-Wollman, N., et al. (2014). Behavioural syndromes and social insects: personality at multiple levels. Biological Reviews of the Cambridge Philosophical Society, 89, 4867.CrossRefGoogle ScholarPubMed
Kabashima, J.N., Greenberg, L., Rust, M.K. and Paine, T.D. (2007). Aggressive interactions between Solenopsis invicta and Linepithema humile (Hymenoptera: Formicidae) under laboratory conditions. Journal of Economic Entomology, 100, 148154.CrossRefGoogle ScholarPubMed
Kaplan, I. and Eubanks, M.D. (2005). Aphids alter the community-wide impact of fire ants. Ecology, 86, 16401649.CrossRefGoogle Scholar
Kay, A.D., Zumbusch, T.B., Heinen, J.L., Marsh, T.C. and Holway, D.A. (2010). Nutrition and interference competition have interactive effects on the behavior and performance of Argentine ants. Ecology, 91, 57e64.CrossRefGoogle ScholarPubMed
Lach, L. (2005). Interference and exploitation competition of three nectar-thieving invasive ant species. Insectes Sociaux, 52, 257262.CrossRefGoogle Scholar
Lach, L. and Hooper-Bui, L.M. (2010). Consequences of ant invasions. In Ant Ecology, ed. Lach, L., Parr, C.L. and Abbott, K.L. Oxford, UK: Oxford University Press, pp. 261286.Google Scholar
Le Breton, J., Delabie, J.H.C., Chazeau, J., Dejean, A. and Jourdan, H. (2004). Experimental evidence of large scale unicoloniality in the tramp ant Wasmannia auropunctata (Roger). Journal of Insect Behaviour, 17, 263271.CrossRefGoogle Scholar
Le Breton, J., Jourdan, H., Chazeau, J., Orivel, J. and Dejean, A. (2005). Niche opportunity and ant invasion: the case of Wasmannia auropunctata in a New Caledonian rain forest. Journal of Tropical Ecology, 21, 9398.CrossRefGoogle Scholar
LeBreton, J., Orivel, J., Chazeau, J. and Dejean, A. (2007). Unadapted behaviour of native, dominant ant species during the colonization of an aggressive, invasive ant. Ecological Research, 22, 107114.CrossRefGoogle Scholar
LeBrun, E.G., Tillberg, C.V., Suarez, A.V., et al. (2007). An experimental study of competition between fire and Argentine ants in their native range. Ecology, 88, 6375.CrossRefGoogle ScholarPubMed
LeBrun, E.G., Abbott, J. and Gilbert, L.E. (2013). Imported crazy ant displaces imported fire ant, reduces and homogenizes grassland ant and arthropod assemblages. Biological Invasions, 15, 24292442.CrossRefGoogle Scholar
LeBrun, E.G., Jones, N.T.J. and Gilbert, L.E. (2014). Chemical warfare among invaders: a detoxification interaction facilitates an ant invasion. Science, 343, 10141017.CrossRefGoogle ScholarPubMed
Lessard, J.P., Fordyce, J.A., Gotelli, N.J. and Sanders, N.J. (2009). Invasive ants alter the phylogenetic structure of ant communities. Ecology, 90, 26642669.CrossRefGoogle ScholarPubMed
Liang, D. and Silverman, J. (2000). ‘‘You are what you eat’’: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften, 87, 412416.CrossRefGoogle ScholarPubMed
Liang, D., Blomquist, G. and Silverman, J. (2001). Hydrocarbon-released nestmate aggression in the Argentine ant, Linepithema humile, following encounters with insect prey. Comparative Biochemistry and Physiology Part B, 129, 871882.CrossRefGoogle ScholarPubMed
Luque, G.M., Giraud, T. and Courchamp, F. (2013). Allee effects in ants. Journal of Animal Ecology, 82, 956965.CrossRefGoogle ScholarPubMed
Macom, T.E. and Porter, S.D. (1996). Comparison of polygyne and monogyne red imported fire ant (Hymenoptera: Formicidae) population densities. Annals of the Entomological Society of America, 89, 535543.CrossRefGoogle Scholar
Markin, G.P. (1968). Nest relationships of the Argentine ant, Iridomyrmex humilis (Hymenoptera: Formicidae). Journal of Economic Entomology, 41, 511516.Google Scholar
McGlynn, T.P. (1999). The worldwide transfer of ants: geographic distribution and ecological invasions. Journal of Biogeography, 26, 535548.CrossRefGoogle Scholar
McGlynn, T.P. (2012). The ecology of nest movement in social insects. Annual Review of Entomology, 57, 291308.CrossRefGoogle ScholarPubMed
McPhee, K., Garnas, J., Drummond, F. and Groden, E. (2012). Homopterans and an invasive red ant, Myrmica rubra (L.), in Maine. Environmental Entomology, 41, 5971.CrossRefGoogle Scholar
Menke, S.B. and Holway, D.A. (2006). Abiotic factors control invasion by Argentine ants at the community scale. Journal of Animal Ecology, 75, 368376.CrossRefGoogle ScholarPubMed
Menke, S.B., Booth, W., Dunn, R.R., et al. (2010). Is it easy to be urban? Convergent success in urban habitats among lineages of a widespread native ant. PLoS ONE, 5, e9194.CrossRefGoogle ScholarPubMed
Ness, J.H. and Bronstein, I.L. (2004). The effects of invasive ants on prospective ant mutualists. Biological Invasions, 6, 445461.CrossRefGoogle Scholar
O'Dowd, D.J., Green, P.T. and Lake, P.S. (2003). Invasional ‘meltdown’ on an oceanic island. Ecology Letters, 6, 812817.CrossRefGoogle Scholar
Orivel, J., Grangier, J., Foucaud, J., et al. (2009). Ecologically heterogeneous populations of the invasive ant Wasmannia auropunctata within its native and introduced ranges. Ecological Entomology, 34, 504512.CrossRefGoogle Scholar
Paris, C.I. and Espadaler, X. (2009). Honeydew collection by the invasive garden ant Lasius neglectus versus the native ant L. grandis. Arthropod-Plant Interactions, 3, 7585.CrossRefGoogle Scholar
Passera, L. and Keller, L. (1994). Mate availability and male dispersal in the Argentine and Linepithema humile (Mayr) (=Iridomyrmex humilis). Animal Behaviour, 48, 361369.CrossRefGoogle Scholar
Pedersen, J.S., Krieger, M.J.B., Vogel, V., Giraud, T. and Keller, L. (2006). Native supercolonies of unrelated individuals in the invasive Argentine ant. Evolution, 60, 782791.Google ScholarPubMed
Phillips, B.L. and Suarez, A.V. (2012). The role of behavioural variation in invasion of new areas. In Behavioural Responses to a Changing World: Mechanisms and Consequences, ed. Candolin, U. and Wong, B.B.M. Oxford: Oxford University Press, pp. 190200.CrossRefGoogle Scholar
Porter, S.D., Williams, D.F., Patterson, R.S. and Fowler, H.G. (1997). Intercontinental differences in the abundance of Solenopsis fire ants (Hymenoptera: Formicidae): Escape from natural enemies? Environmental Entomology, 26, 373384.CrossRefGoogle Scholar
Powell, B.E. and Silverman, J. (2010a). Population growth of Aphis gossypii and Myzus persicae (Hemiptera: Aphididae) in the presence of Linepithema humile and Tapinoma sessile (Hymenoptera: Formicidae). Environmental Entomology, 39, 14921499.CrossRefGoogle ScholarPubMed
Powell, B.E. and Silverman, J. (2010b). Impact of Linepithema humile and Tapinoma sessile (Hymenoptera: Formicidae) on three natural enemies of Aphis gossypii (Hemiptera: Aphididae). Biological Control, 54, 285291.CrossRefGoogle Scholar
Powell, B.E., Brightwell, R.J. and Silverman, J. (2009). Effect of an invasive and native ant on a field population of the black citrus aphid (Hemiptera: Aphididae). Environmental Entomology, 38, 16181625.CrossRefGoogle ScholarPubMed
Rabitsch, W. (2011). The hitchhiker's guide to alien ant invasions. BioControl, 56, 551572.CrossRefGoogle Scholar
Rice, K.B. and Eubanks, M.D. (2013). No enemies needed: cotton aphids (Hemiptera: Aphididae) directly benefit from red imported fire ant (Hymenoptera: Formicidae) tending. Florida Entomologist, 96, 929932.CrossRefGoogle Scholar
Roulston, T.H., Buczkowski, G., Silverman, J. (2003). Nestmate discrimination in ants: effect of bioassay on aggressive behavior. Insectes Sociaux, 50, 151159.CrossRefGoogle Scholar
Roura-Pascual, N., Suarez, A.V., Gomez, , et al. (2004). Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proceedings of the Royal Society London B: Biological Sciences, 271, 25272534.CrossRefGoogle ScholarPubMed
Roura-Pascual, N., Hui, C., Takayoshi, I., et al. (2011). Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proceedings of the National Academy of Sciences, USA, 108, 220225.CrossRefGoogle Scholar
Rowles, A.D. and O'Dowd, D.J. (2007). Interference competition by Argentine ants displaces native ants: implications for biotic resistance to invasion. Biological Invasions, 9, 7385.CrossRefGoogle Scholar
Rowles, A.D. and Silverman, J. (2009). Carbohydrate supply limits invasion of natural communities by Argentine ants. Oecologia, 161, 161171.CrossRefGoogle ScholarPubMed
Sagata, K. and Lester, P.J. (2009). Behavioural plasticity associated with propagule size, resources, and the invasion success of the Argentine ant Linepithema humile. Journal of Applied Ecology, 46, 1927.CrossRefGoogle Scholar
Shik, J.Z. and Silverman, J. (2013). Towards a nutritional ecology of invasive establishment: aphid mutualists provide better fuel for incipient Argentine ant colonies than insect prey. Biological Invasions, 15, 829836.CrossRefGoogle Scholar
Shik, J.Z., Kay, A.D. and Silverman, J. (2014). Aphid honeydew provides a nutritionally balanced resource for incipient Argentine ant mutualists. Animal Behaviour, 95, 3339.CrossRefGoogle Scholar
Shoemaker, D.D., DeHeer, C.J., Krieger, M.J.B. and Ross, K.G. (2006). Population genetics of the invasive fire ant Solenopsis invicta (Hymenoptera: Formicidae) in the United States. Annals of the Entomological Society of America, 99, 12131233.CrossRefGoogle Scholar
Silverman, J. and Liang, D. (2001). Colony disassociation following diet partitioning in a unicolonial ant. Naturwissenshaften, 88, 7377.Google Scholar
Silverman, J. and Nsimba, B. (2000). Soil-free collection of Argentine ants based on food-directed brood and queen movement. Florida Entomologist, 83, 1016.CrossRefGoogle Scholar
Simberloff, D., Martin, J.-L., Genovesi, P., et al. (2013). Impacts of biological invasions: what's what and the way forward. Trends in Ecology and Evolution, 28, 5866.CrossRefGoogle ScholarPubMed
Sorrells, T.R., Kuritzky, L.Y., Kauhanen, P.G., et al. (2011). Chemical defense by the native winter ant (Prenolepis imparis) against the invasive Argentine ant (Linepithema humile). PLoS ONE, 6(4), e18717.CrossRefGoogle ScholarPubMed
Spicer-Rice, E. and Silverman, J. (2013a). Propagule pressure and climate contribute to the displacement of Linepithema humile by Pachycondyla chinensis. PLoS ONE, 8(2), e56281. doi:10.1371/journal.pone.0056281.CrossRefGoogle Scholar
Spicer-Rice, E. and Silverman, J. (2013b). Submissive behaviour and habituation facilitate entry into habitat occupied by an invasive ant. Animal Behaviour, 86, 497506.CrossRefGoogle Scholar
Steiner, F.M., Schlick-Steiner, B.C., Trager, J., et al. (2006). Tetramorium tsushimae, a new invasive ant in North America. Biological Invasions, 8, 117123.CrossRefGoogle Scholar
Steiner, F.M., Schlick-Steiner, B.C., Moder, K., et al. (2007). Abandoning aggression but maintaining self-nonself discrimination as a first stage in ant supercolony formation. Current Biology, 17, 19031907.CrossRefGoogle ScholarPubMed
Sturgis, S.J. and Gordon, D.M. (2012). Nestmate recognition in ants (Hymenoptera: Formicidae): a review. Myrmecological News, 16, 101110.Google Scholar
Suarez, A.V., Tsutsui, N.D., Holway, D.A. and Case, T.J. (1999). Behavioral and genetic differentiation between native and introduced populations of the Argentine ant. Biological Invasions, 1, 4353.CrossRefGoogle Scholar
Suarez, A.V., Holway, D.A. and Case, T.J. (2001). Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proceedings of the National Academy of Sciences, USA, 98, 10951100.CrossRefGoogle ScholarPubMed
Suarez, A.V., Holway, D.A. and Tsutsui, N.D. (2008). Genetics and behavior of a colonizing species: the invasive Argentine ant. The American Naturalist, 172, Suppl. 1, S7284.CrossRefGoogle ScholarPubMed
Sunamura, E., Espadaler, X., Sakamoto, H., et al. (2009). Intercontinental union of Argentine ants: behavioral relationships among introduced populations in Europe, North America, and Asia. Insectes Sociaux, 56, 143147.CrossRefGoogle Scholar
Sunamura, E., Hoshizaki, S., Sakamoto, H., et al. (2011). Workers select mates for queens: a possible mechanism of gene flow restriction between supercolonies of the invasive Argentine ant. Naturwissenschaften, 98, 361368.CrossRefGoogle ScholarPubMed
Thomas, M.L. and Holway, D.A. (2005). Condition-specific competition between invasive Argentine ants and Australian Iridomyrmex. Journal of Animal Ecology, 74, 532542.CrossRefGoogle Scholar
Thomas, M.L., Tsutsui, N.D. and Holway, D.A. (2005). Intraspecific competition influences the symmetry and intensity of aggression in the Argentine ant. Behavioral Ecology, 16, 472481.CrossRefGoogle Scholar
Thomas, M.L., Payne-Makrisâ, C. M., Suarez, A.V., Tsutsui, N.D. and Holway, D.A. (2006). When supercolonies collide: territorial aggression in an invasive and unicolonial social insect. Molecular Ecology, 15, 43034315.CrossRefGoogle Scholar
Thullier, W., Richardson, D.M. and Midgley, G.F. (2007). Will climate change promote alien plant invasions? In Biological Invasions, ed. Nentwig, W. Berlin: Springer, pp. 197211.CrossRefGoogle Scholar
Tillberg, C.V., Holway, D.A., LeBrun, E.G. and Suarez, A.V. (2007). Trophic ecology of invasive Argentine ants in their native and introduced ranges. Proceedings of the National Academy of Sciences, USA, 104, 2085620861.CrossRefGoogle ScholarPubMed
Tschinkel, W.R. (2006). The Fire Ants. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
Tsutsui, N.D., Suarez, A.V., Holway, D.A. and Case, T.J. (2000). Reduced genetic variation and the success of an invasive species. Proceedings of the National Academy of Sciences, USA, 97, 59485953.CrossRefGoogle ScholarPubMed
Tsutsui, N.D., Suarez, A.V. and Grosberg, R.K. (2003). Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proceedings of the National Academy of Sciences, USA, 100, 10781083.CrossRefGoogle Scholar
Ugelvig, L.V., Drijfhout, F.P., Kronauer, D.J.C, et al. (2008). The introduction history of invasive garden ants in Europe: integrating genetic, chemical and behavioural approaches. BMC Biology, 6, 11.CrossRefGoogle ScholarPubMed
Valery, L., Fritz, H., Lefeuvre, J-C. and Simberloff, D. (2008). In search of a real definition of the biological invasion phenomenon itself. Biological Invasions, 10, 13451351.CrossRefGoogle Scholar
Valery, L., Fritz, H., Lefeuvre, J-C. and Simberloff, D. (2009). Invasive species can also be native. Trends in Ecology and Evolution, 24, 585.CrossRefGoogle ScholarPubMed
Vander Meer, R.K., Williams, F.D. and Lofgren, C.S. (1981). Hydrocarbon components of the trail pheromone of the red imported fire ant Solenopsis invicta. Tetrahedron Letters, 22, 16511654.Google Scholar
Vander Meer, R.K., Lofgren, C.S. and Alvarez, F.M. (1990). The orientation inducer pheromone of the fire ant Solenopsis invicta. Physiological Entomology, 15, 483488.CrossRefGoogle Scholar
van Wilgenburg, E. and Elgar, M.A. (2013). Confirmation bias in studies of nestmate recognition: a cautionary note for research into the behavior of animals. PLoS One, 8, e53548.CrossRefGoogle ScholarPubMed
van Wilgenburg, E., Sulc, R., Shea, K.J. and Tssutsui, N.D. (2010). Deciphering the chemical basis of nestmate recognition. Journal of Chemical Ecology, 36, 751758.CrossRefGoogle ScholarPubMed
van Zweden, J.S. and d'Ettorre, P. (2010). Nestmate recognition in social insects and the role of hydrocarbons. In Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology, ed. Blomquist, G.J. and Bagneres, A.-G. Cambridge, UK: Cambridge University Press.Google Scholar
Vasquez, G.M. and Silverman, J. (2008a). Intraspecific aggression and colony fusion in the Argentine ant. Animal Behaviour, 75, 583593.CrossRefGoogle Scholar
Vasquez, G.M and Silverman, J. (2008b). Non-nestmate conspecific acceptance and the complexity of nestmate discrimination in the Argentine ant. Behavioral Ecology and Sociobiology, 62, 537548.CrossRefGoogle Scholar
Vasquez, G.M., Schal, C. and Silverman, J. (2008). Cuticular hydrocarbons as queen adoption cues in the invasive Argentine ant. Journal of Experimental Biology, 211, 12491256.CrossRefGoogle ScholarPubMed
Vasquez, G.M., Schal, C. and Silverman, J. (2009). Colony fusion in Argentine ants is guided by worker and queen cuticular hydrocarbon profile similarity. Journal of Chemical Ecology, 35, 922932.CrossRefGoogle ScholarPubMed
Vasquez, G.M., Vargo, E.L. and Silverman, J. (2012). Fusion between southeastern US Argentine ant colonies and its effect on colony size and productivity. Annals of the Entomological Society of America, 105, 268274.CrossRefGoogle Scholar
Vega, S.Y. and Rust, M.K. (2003). Determining the foraging range and origin of resurgence after treatment of Argentine ant (Hymenoptera: Formicidae) in urban areas. Journal of Economic Entomology, 96, 844849.CrossRefGoogle ScholarPubMed
Vogel, V., Pedersen, J.S., D'Ettorre, P., Lehmann, L. and Keller, L. (2009). Dynamics and genetic structure of Argentine ant supercolonies in their native range. Evolution, 63, 16271639.CrossRefGoogle ScholarPubMed
Vogt, J.T., Reed, J.T. and Brown, R.L. (2004). Temporal foraging activity of selected ant species in Northern Mississippi during summer months. Journal of Entomological Science, 39, 444452.CrossRefGoogle Scholar
Walters, A.C. and Mackay, D.A. (2005). Importance of large colony size for successful invasion by Argentine ants (Hymenoptera: Formicidae): evidence for biotic resistance by native ants. Austral Ecology, 30, 395406.CrossRefGoogle Scholar
Ward, P.S., Beggs, J.R., Clout, M.N., Harris, R.J. and O'Connor, S. (2006). The diversity and origin of exotic ant arriving in New Zealand via human-mediated dispersal. Diversity and Distributions, 12, 601609.CrossRefGoogle Scholar
Weeks, R.D.., Wilson, L.T., Vinson, S.B. and James, W.D. (2004). Flow of carbohydrates, lipids and protein among colonies of polygyne red imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae). Annals of the Entomological Society of America, 97, 105110.CrossRefGoogle Scholar
Wetterer, J.K. (2007). Biology and impacts of Pacific Island invasive species. 3. The African big-headed ant, Pheidole megacephala (Hymenoptera: Formicidae). Pacific Science, 61, 437456.CrossRefGoogle Scholar
Wetterer, J.K. (2012). Worldwide spread of the African big-headed ant, Pheidole megacephala (Hymenoptera: Formicidae). Myrmecological News, 17, 5162.Google Scholar
Wetterer, J.K. and Radchenko, A.G. (2011). Worldwide spread of the ruby ant, Myrmica rubra (Hymenopetra: Formicidae). Myrmecological News, 14, 8796.Google Scholar
Wilder, S.M., Holway, D.A., Suarez, A.V. and Eubanks, M.D. (2011). Macronutrient content of plant-based food affects growth of a carnivorous arthropod. Ecology, 92, 325332.CrossRefGoogle ScholarPubMed
Wirth, R., Betschlag, W., Ryel, R.J. and Holldobler, B. (1997). Annual foraging of the leaf-cutting ant Atta colombica in a semideciduous rain forest in Panama. Journal of Tropical Ecology, 13, 741757.CrossRefGoogle Scholar
Witte, V., Attygalle, A.B. and Meinwald, J. (2007). Complex chemical communication in the crazy ant Paratrechina longicornis Latreille (Hymenoptera: Formicidae). Chemoecology, 17, 5762.CrossRefGoogle Scholar
Zee, J. and Holway, D.A. (2006). Nest raiding by the invasive Argentine ant on colonies of the harvester ant, Pogonomyrmex subnitidus. Insectes Sociaux, 53, 161167.CrossRefGoogle Scholar

References

Aliabadi, B.K. and Juliano, S.A. (2002). Escape from gregarine parasites affects the competitive impact of an invasive mosquito. Biological Invasions, 4, 283297.CrossRefGoogle ScholarPubMed
Alto, B.E., Kesavaraju, B., Juliano, S.A. and Lounibos, L.P. (2009). Stage-dependent predation on competitors: consequences for the outcome of a mosquito invasion. Journal of Animal Ecology, 78, 928936.CrossRefGoogle ScholarPubMed
Andreadis, T.G. and Wolfe, R.J. (2010). Evidence for reduction of native mosquitoes with increased expansion of invasive Ochlerotatus japonicus japonicus (Diptera: Culicidae) in the northeastern United States. Journal of Medical Entomology, 47, 4352.CrossRefGoogle ScholarPubMed
Bagny, L., Delatte, H., Quilici, S. and Fontenille, D. (2009). Progressive decrease in Aedes aegypti distribution in Reunion Island since the1900s. Journal of Medical Entomology, 46, 15411545.CrossRefGoogle Scholar
Bagny Beilhe, L., Delatte, H., Juliano, S.A., Fontenille, D. and Quilici, S. (2013). Ecological interactions in Aedes species from Reunion Island. Medical and Veterinary Entomology, 27, 349459.CrossRefGoogle ScholarPubMed
Bargielowski, I. and Lounibos, L.P. (2014). Rapid selection in the dengue vector Aedes aegypti in response to satyrization by invasive Aedes albopictus. Evolutionary Ecology, 28, 193203.CrossRefGoogle ScholarPubMed
Bargielowski, I., Lounibos, L.P. and Carrasquilla, M.C. (2013). Evolution of resistance to satyrization: evidence of reproductive character displacement in populations of invasive dengue vectors. Proceedings of the National Academy of Sciences, USA, 110, 28882892.CrossRefGoogle ScholarPubMed
Bargielowski, I.E., Lounibos, L.P., Shin, D., et al. (2015a). Widespread evidence for interspecific mating between Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in nature. Infection, Genetics, and Evolution, 36, 456461.Google ScholarPubMed
Bargielowski, I., Blosser, E. and Lounibos, L.P. (2015b). The effects of interspecific courtship on the mating success of Aedes aegypti and Aedes albopictus males. Annals of the Entomological Society of America, 108, 513518.CrossRefGoogle Scholar
Beketov, M.A. and Liess, M. (2007). Predation risk perception and food scarcity induce alterations of life-cycle traits of the mosquito Culex pipiens. Ecological Entomology, 32, 405410.CrossRefGoogle Scholar
Benedict, M.C., Levine, R.S., Hawley, W.A. and Lounibos, L.P. (2007). Spread of the tiger: global risk of invasion by Aedes albopictus. Vector Borne and Zoonotic Diseases, 7, 7685.CrossRefGoogle ScholarPubMed
Braks, M.A.H., Honório, N.A., Lourenço-de-Oliveira, R., Juliano, S.A. and Lounibos, L.P. (2003). Convergent habitat segregation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in southeastern Brazil and Florida, USA. Journal of Medical Entomology, 40, 785794.CrossRefGoogle Scholar
Braks, M.A.H., Honório, N.A., Lounibos, L.P., Lourenço-de-Oliveira, R. and Juliano, S.A. (2004). Interspecific competition between two invasive species of container mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazil. Annals of the Entomological Society of America, 97, 130139.CrossRefGoogle Scholar
Brown, J.E., McBride, C.S., Johnson, P., et al. (2011). Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases. Proceedings of the Royal Society of London B: Biological Sciences, 278, 24462454.Google Scholar
Brown, J.E., Evans, B.R., Zheng, W., et al. (2013). Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution, 68, 514525.CrossRefGoogle ScholarPubMed
Brown, J.S. and Kotler, B.P. (2004). Hazardous duty pay and the foraging cost of predation. Ecology Letters, 7, 9991014.CrossRefGoogle Scholar
Byers, J.E. (2002). Physical habitat attribute mediates biotic resistance to non-indigenous species invasion. Oecologia, 130, 146156.CrossRefGoogle ScholarPubMed
Carrasquilla, M.C. and Lounibos, L.P. (2015). Satyrization without evidence of successful insemination from interspecific mating between invasive mosquitoes. Biology Letters, 11, 20150527.CrossRefGoogle ScholarPubMed
Carvalho, R.G., Lourenço-de-Oliveira, R. and Braga, I.A. (2014). Updating the geographical distribution and frequency of Aedes albopictus in Brazil with remarks regarding its range in the Americas. Memorias do Instituto Oswaldo Cruz, 109, 787796.CrossRefGoogle ScholarPubMed
Chadee, D.D., Ward, R.A. and Novak, R.J. (1998). Natural habitats of Aedes aegypti in the Caribbean: a review. Journal of the American Mosquito Control Association, 14, 511.Google ScholarPubMed
Costanzo, K.S., Kesavaraju, B. and Juliano, S.A. (2005). Condition-specific competition in container mosquitoes: the role of non-competing life-history stages. Ecology, 86, 32893295.CrossRefGoogle Scholar
Davis, M.A. (2006). Invasion biology 1958–2004: the pursuit of science and conservation. In Conceptual Ecology and Invasion Biology: Reciprocal Approaches to Nature, ed. Cadotte, M.W., McMahon, S.M. and Fukami, T. London: Kluwer Publishers, pp. 3566.CrossRefGoogle Scholar
Dekker, T., Steib, B., Carde, R.T. and Geier, M. (2002). L-lactic acid: a human-signifying host cue for the anthropophilic mosquito Anopheles gambiae. Medical and Veterinary Entomology, 16, 9198.CrossRefGoogle ScholarPubMed
DeRivera, C.E., Ruiz, G.M., Hines, A.H. and Jivo, V.P. (2005). Biotic resistance to invasion: native predator limits abundance and distribution of an introduced crab. Ecology, 86, 33643376.CrossRefGoogle Scholar
Fonseca, D.M., Keyghobadi, N., Malcolm, C.A., et al. (2004). Emerging vectors in the Culex pipiens complex. Science 303, 15351538.CrossRefGoogle ScholarPubMed
Fritz, M.L., Walker, E.D., Miller, J.R., Severson, D.W. and Dworkin, I.D. (2015). Divergent host preferences of above- and below-ground Culex pipiens mosquitoes and their hybrid offspring. Medical and Veterinary Entomology, 29, 115123.CrossRefGoogle ScholarPubMed
Gillies, M.T. (1964). Selection for host preference in Anopheles gambiae. Nature, 203, 852854.CrossRefGoogle ScholarPubMed
Gouck, H.K. (1972). Host preferences of various strains of Aedes aegypti and A. simpsoni as determined by an olfactometer. Bulletin of the World Health Organization, 47, 680683.Google Scholar
Grill, C.P. and Juliano, S.A. (1996). Predicting species interactions based on behaviour: predation and competition in container-dwelling mosquitoes. Journal of Animal Ecology, 65, 6376.CrossRefGoogle Scholar
Griswold, M.W. and Lounibos, L.P. (2005). Does differential predation permit invasive and native mosquito larvae to coexist in Florida? Ecological Entomology, 30, 122127.CrossRefGoogle ScholarPubMed
Gröning, J. and Hochkirch, A. (2008). Reproductive interference between animal species. Quarterly Review of Biology, 83, 257282.CrossRefGoogle ScholarPubMed
Gubler, D.J. and Bhattachaya, N.C. (1972). Swarming and mating of Aedes (S.) albopictus in nature. Mosquito News, 32, 219223.Google Scholar
Guillaumot, L., Ofanoa, R., Swillen, L., Singh, N., Bossin, H.C. and Schaffner, F. (2012). Distribution of Aedes albopictus in southwestern Pacific countries, with a first report from the Kingdom of Tonga. Parasites and Vectors, 5, 247.CrossRefGoogle ScholarPubMed
Harper, J.P. and Paulson, S.L. (1994). Reproductive isolation between Florida strains of Aedes aegypti and Aedes albopictus. Journal of the American Mosquito Control Association, 10, 8892.Google ScholarPubMed
Harrington, L.C., Ponlawat, A., Edman, J.D., Scott, T.W. and Vermeylen, F. (2008). Influence of container size, location, and time of day on oviposition patterns of the dengue vector, Aedes aegypti, in Thailand. Vector Borne and Zoonotic Diseases, 8, 415423.CrossRefGoogle ScholarPubMed
Harrison, B.A., Boonyakanist, P. and Mongkolpanya, K. (1972). Biological observations on Aedes setoi Huang in Thailand with notes on rural Aedes aegypti (L.) and other Stegomyia populations. Journal of Medical Entomology, 9, 16.CrossRefGoogle Scholar
Hartberg, W.K. (1971). Observations on the mating behaviour of Aedes aegypti in nature. Bulletin of the World Health Organization, 45, 847850.Google ScholarPubMed
Hawley, W.A. (1988). The biology of Aedes albopictus. Journal of the American Mosquito Control Association, 4 (Suppl.), 140.Google Scholar
Huang, Y-M. and Hitchcock, J.C. (1980). Medical entomology studies XII. A revision of the Aedes scutellaris Group of Tonga (Diptera: Culicidae). Contributions of the American Entomological Institute, 17(3), 1107.Google Scholar
Hufbauer, R.A., Facon, B., Ravigné, V., et al. (2012). Anthropogenically induced adaptation to invade (AIAI). Evolutionary Applications, 5, 89101.CrossRefGoogle ScholarPubMed
Jeschke, J.M. and Strayer, D.L. (2006). Determinants of vertebrate invasion success in Europe and North America. Global Change Biology, 12, 16081619.CrossRefGoogle Scholar
Juliano, S.A. (1998). Species introduction and replacement among mosquitoes: interspecific resource competition or apparent competition? Ecology, 79, 255268.CrossRefGoogle Scholar
Juliano, S.A. (2009). Species interactions among larval mosquitoes: context dependence across habitat gradients. Annual Review of Entomology, 54, 3756.CrossRefGoogle ScholarPubMed
Juliano, S.A. (2010). Coexistence, exclusion, or neutrality? A meta-analysis of competition between Aedes albopictus and resident mosquitoes. Israel Journal of Ecology and Evolution, 56, 325351.CrossRefGoogle ScholarPubMed
Juliano, S.A. and Gravel, M.E. (2002). Predation and the evolution of prey behavior: an experiment with tree hole mosquitoes. Behavioral Ecology, 13, 301311.CrossRefGoogle Scholar
Juliano, S.A. and Lounibos, L.P. (2005). Ecology of invasive mosquitoes: effects on resident species and on human health. Ecology Letters, 8, 558574.CrossRefGoogle ScholarPubMed
Juliano, S.A. and Reminger, L. (1992). The relationship between vulnerability to predation and behavior: geographic and ontogenetic differences in larval treehole mosquitoes. Oikos, 63, 465476.CrossRefGoogle Scholar
Juliano, S.A., Hechtel, L.J. and Waters, J. (1993). Behavior and risk of predation in larval tree hole mosquitoes: effects of hunger and population history of predation. Oikos, 68, 229241.CrossRefGoogle Scholar
Juliano, S. A., O'Meara, G.F., Morrill, J.R. and Cutwa, M.M. (2002). Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia, 130, 458469.CrossRefGoogle ScholarPubMed
Juliano, S.A., Lounibos, L.P. and O'Meara, G.F. (2004). A field test for competitive effects of Aedes albopictus on Aedes aegypti in South Florida: differences between sites of coexistence and exclusion? Oecologia, 139, 583593.CrossRefGoogle ScholarPubMed
Juliano, S.A., Lounibos, L.P., Nishimura, N. and Greene, K. (2010). Your worst enemy could be your best friend: predator contributions to invasion resistance and persistence of natives. Oecologia, 162, 709718.CrossRefGoogle ScholarPubMed
Kaplan, L., Kendell, D., Robertson, D., Livdahl, T. and Khatchikian, C. (2010). Aedes aegypti and Aedes albopictus in Bermuda: extinction, invasion, invasion and extinction. Biological Invasions, 12, 32773288.CrossRefGoogle Scholar
Kaufman, M.G. and Fonseca, D.M. (2014). Invasion biology of Aedes japonicus japonicus (Diptera: Culicidae). Annual Review of Entomology, 59, 3149.CrossRefGoogle ScholarPubMed
Kesavaraju, B. and Juliano, S.A. (2004). Differential behavioral responses to water-borne cues to predation in two container dwelling mosquitoes. Annals of the Entomological Society of America, 97, 194201.CrossRefGoogle ScholarPubMed
Kesavaraju, B. and Juliano, S.A. (2008). Behavioral responses of Aedes albopictus to a predator are correlated with size-dependent risk of predation. Annals of the Entomological Society of America, 101, 11501153.CrossRefGoogle ScholarPubMed
Kesavaraju, B. and Juliano, S.A. (2009). No evolutionary response to four generations of laboratory selection on antipredator behavior of Aedes albopictus: potential implications for biotic resistance to invasion. Journal of Medical Entomology, 46, 772781.CrossRefGoogle ScholarPubMed
Kesavaraju, B., Alto, B.W., Lounibos, L.P. and Juliano, S.A. (2007). Behavioural responses of larval container mosquitoes to a size-selective predator. Ecological Entomology, 32, 262272.CrossRefGoogle ScholarPubMed
Kesavaraju, B., Damal, K. and Juliano, S.A. (2008). Do natural container habitats impede invader dominance? Predator-mediated coexistence of invasive and native container-dwelling mosquitoes. Oecologia, 155, 631639.CrossRefGoogle ScholarPubMed
Kesavaraju, B, Kahn, D.F. and Gaugler, R. (2011). Behavioral differences of invasive container-dwelling mosquitoes to a native predator. Journal of Medical Entomology, 48, 526532.CrossRefGoogle ScholarPubMed
Kishi, S. and Nakazawa, T. (2013). Analysis of species coexistence co-mediated by resource competition and reproductive interference. Population Ecology, 55, 305313.CrossRefGoogle Scholar
LaPointe, D.A., Atkinson, C.T. and Samuel, M.D. (2012). Ecology and conservation biology of avian malaria. Annals of the New York Academy of Sciences, 1249, 211226.CrossRefGoogle ScholarPubMed
Leahy, M.G. and Craig, G.B. (1967). Barriers to hybridization between Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Evolution, 21, 4158.Google ScholarPubMed
Leahy, M.G., VandeHey, R.C. and Booth, K.S. (1978). Differential response to oviposition site by feral and domestic populations of Aedes aegypti (L.) (Diptera: Culicidae). Bulletin of Entomological Research, 68, 455463.CrossRefGoogle Scholar
Leisnham, P.T. and Juliano, S.A. (2010). Interpopulation differences in competitive effect and response of the mosquito Aedes aegypti and resistance to invasion of a superior competitor. Oecologia, 164, 221230.CrossRefGoogle ScholarPubMed
Leisnham, P.T., Lounibos, L.P., O'Meara, G.F. and Juliano, S.A. (2009). Interpopulation divergence in competitive interactions of the mosquito Aedes albopictus. Ecology, 90, 24052413.CrossRefGoogle ScholarPubMed
Livdahl, T. and Willey, M.S. (1991). Prospects for an invasion: competition between Aedes albopictus and native Aedes triseriatus. Science, 253, 189191.CrossRefGoogle ScholarPubMed
Lockwood, J.L., Hoopes, M.F. and Marchetti, M.P. (2007). Invasion Ecology. Malden, MA: Blackwell Publishing.Google Scholar
Lorimer, N., Lounibos, L.P. and Petersen, J.L. (1976). Field trials with a translocation homozygote in Aedes aegypti for population replacement. Journal of Economic Entomology, 69, 405409.CrossRefGoogle ScholarPubMed
Lounibos, L.P. (1981). Habitat segregation among African treehole mosquitoes. Ecological Entomology, 6, 129154.CrossRefGoogle Scholar
Lounibos, L.P. (2002). Invasions by insect vectors of human disease. Annual Review of Entomology, 47, 233266.CrossRefGoogle ScholarPubMed
Lounibos, L.P., Escher, R.L., Nishimura, N. and Juliano, S.A. (1997). Long term dynamics of a predator used for biological control and decoupling from mosquito prey in a subtropical treehole ecosystem. Oecologia, 111, 189200.CrossRefGoogle Scholar
Lounibos, L.P., O'Meara, G.F., Escher, R.L., et al. (2001). Testing predicted competitive displacement of native Aedes by the invasive Asian tiger mosquito Aedes albopictus in Florida, USA. Biological Invasions, 3, 151166.CrossRefGoogle Scholar
Lowe, S., Browne, M., Boudjelas, S. and De Poorter, M. (2000). 100 of the World's Worst Invasive Alien Species: A selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG), a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), Auckland.Google Scholar
Mack, R.N. (2000). Cultivation fosters plant naturalization by reducing environmental stochasticity. Biological Invasions, 2, 111122.CrossRefGoogle Scholar
Mattingly, P.F. (1957). Genetical aspects of the Aedes aegypti problem I. Taxonomy and bionomics. American Journal Tropical Medicine and Parasitology, 51, 392408.CrossRefGoogle Scholar
McBride, C.S., Baier, F., Omondi, A.B., et al. (2014). Evolution of mosquito preference for humans linked to an odorant receptor. Nature, 515, 222227.CrossRefGoogle Scholar
McClain, D.K. and Rai, K.S. (1985). Ethological divergence in allopatry and asymmetrical isolation in the South Pacific Aedes scutellaris subgroup. Evolution, 39, 9981008.CrossRefGoogle Scholar
Medley, K.A. (2010). Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Global Ecology and Biogeography, 19, 122133.CrossRefGoogle Scholar
Moyle, P.B. and Light, T. (1996). Biological invasions of freshwater: empirical rules and assembly theory. Biological Conservation, 78, 149162.CrossRefGoogle Scholar
Mukwaya, L.G. (1977). Genetic control of feeding preferences in the mosquitoes Aedes (Stegomyia) simpsoni and aegypti. Physiological Entomology, 2, 133145.CrossRefGoogle Scholar
Nasci, R.S., Hare, S.G. and Willis, F.S. (1989). Interspecific mating between Louisiana strains of Aedes albopictus and Aedes aegypti in the field and in laboratory. Journal of the American Mosquito Control Association, 5, 416421.Google Scholar
O'Meara, G.F., EvansJr., L.F., Gettman, A.D. and Cuda, J.P. (1995). Spread of Aedes albopictus and decline of A. aegypti (Diptera: Culicidae) in Florida. Journal of Medical Entomology, 32, 554562.CrossRefGoogle ScholarPubMed
Petersen, J.L. (1977). Behavioral differences in two subspecies of Aedes aegypti (L.) (Diptera: Culicidae) in East Africa. PhD dissertation. Notre Dame, IN: University of Notre Dame.Google Scholar
Powell, J.R. and Tabachnick, W.J. (2013). History of domestication and spread of Aedes aegypti: a review. Memorias do Instituto Oswaldo Cruz, Rio de Janeiro, 108(Suppl. I), 1117.CrossRefGoogle ScholarPubMed
Ribeiro, J.M. (1988). Can satyrs control pests and vectors? Journal of Medical Entomology, 25, 431440.CrossRefGoogle ScholarPubMed
Ribeiro, J.M. and Spielman, A. (1986). The satyr effect: a model predicting parapatry and species extinction. American Naturalist, 128, 513528.CrossRefGoogle Scholar
Ritchie, S.A., Moore, P., Carruthers, M., et al. (2006). Discovery of a widespread infestation of Aedes albopictus in the Torres Strait, Australia. Journal of the American Mosquito Control Association, 22, 358365.CrossRefGoogle ScholarPubMed
Sih, A. (1986). Antipredator responses and the perception of danger by mosquito larvae. Ecology, 67, 434441.CrossRefGoogle Scholar
Simard, F., Nchoutpouen, E., Toto, J.C. and Fontenille, D. (2005). Geographic distribution and breeding site preference of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) in Cameroon, Central Africa. Journal of Medical Entomology, 42, 726731.CrossRefGoogle ScholarPubMed
Skelly, D. (1994). Activity level and the susceptibility of anuran larvae to predation. Animal Behaviour, 47, 465468.CrossRefGoogle Scholar
Soper, D.L. and Wilson, D.B. (1943). Anopheles gambiae in Brazil 1930 to 1940. New York, NY: Rockefeller Foundation.Google Scholar
Sylla, M., Bosio, C., Urdaneta-Marquez, L., Ndiaye, M. and Black, W.C. (2009). Gene flow, subspecies composition, and dengue virus-2 susceptibility among Aedes aegypti collections in Senegal. PLoS Neglected Tropical Diseases, 3, e408.CrossRefGoogle ScholarPubMed
Sylla, M., Ndiaye, M. and Black, W.C. (2013). Aedes species in treeholes and fruit husks between dry and wet seasons in southeastern Senegal. Journal of Vector Ecology, 38, 237244.CrossRefGoogle ScholarPubMed
Takken, W. and Verhulst, N.O. (2013). Host preferences of blood-feeding mosquitoes. Annual Review of Entomology, 58, 433453.CrossRefGoogle ScholarPubMed
Tripet, F., Lounibos, L.P., Robbins, D., Moran, J., Nishimura, N. and Blosser, E.M. (2011). Competitive reduction by satyrization? Evidence for interspecific mating in nature and asymmetric reproductive competition between invasive mosquito vectors. American Journal of Tropical Medicine and Hygiene, 85, 265270.CrossRefGoogle ScholarPubMed
Trpis, M. and Haüsermann, W. (1975). Demonstration of differential domesticity of Aedes aegypti (L.) (Diptera, Culicidae) in Africa by mark–release–recapture. Bulletin of Entomological Research, 65, 199208.CrossRefGoogle Scholar
Trpis, M. and Haüsermann, W. (1978). Genetics of house-entering behaviour in East African populations of Aedes aegypti (L.) (Diptera, Culicidae) and its relevance to speciation. Bulletin of Entomological Research, 68, 521532.CrossRefGoogle Scholar
Van Riper, C., Van Riper, S.G., Goff, M.L. and Laird, M. (1986). The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecological Monographs, 56, 327344.CrossRefGoogle Scholar
Wallis, G.P. and Tabachnick, W.J. (1990). Genetic analysis of rock hole and domestic Aedes aegypti on the Caribbean island of Anguilla. Journal of the American Mosquito Control Association, 6, 625630.Google ScholarPubMed
Ward, R.A. (1984). Mosquito fauna of Guam: case history of an introduced fauna. In Commerce and the Spread of Pests and Disease Vectors, ed. Laird, M. New York: Praeger, pp. 143162.Google Scholar
Wellborn, G.A. (2002). Trade off between competitive ability and antipredator adaptation in a freshwater amphipod species complex. Ecology, 83, 129136.CrossRefGoogle Scholar

References

Alcaraz, C., Vila-Gispert, A. and Garcia-Berthou, E. (2005). Profiling invasive fish species: the importance of phylogeny and human use. Diversity and Distributions, 11, 289298.CrossRefGoogle Scholar
Arthington, A.H. (1991). Ecological and genetic impacts of introduced and translocated fresh-water fishes in Australia. Canadian Journal of Fisheries and Aquatic Sciences, 48, 3343.CrossRefGoogle Scholar
Avise, J.C. and Liu, J.-X. (2011). Multiple mating and its relationship to brood size in pregnant fishes versus pregnant mammals and other viviparous vertebrates. Proceedings of the National Academy of Sciences, USA, 108, 70917095.CrossRefGoogle ScholarPubMed
Baker, H.G. (1955). Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution, 9, 347349.Google Scholar
Barbosa, M. and Magurran, A.E. (2006). Female mating decisions: maximizing fitness? Journal of Fish Biology, 68, 16361661.CrossRefGoogle Scholar
Barbosa, M., Dornelas, M. and Magurran, A.E. (2010). Effects of polyandry on male phenotypic diversity. Journal of Evolutionary Biology, 23, 24422452.CrossRefGoogle ScholarPubMed
Barbosa, M., Connolly, S.R., Hisano, M., Dornelas, M. and Magurran, A.E. (2012). Fitness consequences of female multiple mating: a direct test of indirect benefits. BMC Evolutionary Biology, 12, 14712148.CrossRefGoogle ScholarPubMed
Barton, N.H. and Charlesworth, B. (1998). Why sex and recombination? Science, 281, 19861990.CrossRefGoogle ScholarPubMed
Bassar, R.D., Marshall, M.C., López-Sepulcre, A., et al. (2010). Local adaptation in Trinidadian guppies alters ecosystem processes. Proceedings of the National Academy of Sciences, USA, 107, 36163621.CrossRefGoogle ScholarPubMed
Becher, S.A. and Magurran, A.E. (2000). Gene flow in Trinidadian guppies. Journal of Fish Biology, 56, 241249.CrossRefGoogle Scholar
Becher, S.A. and Magurran, A.E. (2004). Multiple mating and reproductive skew in Trinidadian guppies. Proceedings of the Royal Society B: Biological Sciences, 271, 10091014.CrossRefGoogle ScholarPubMed
Botham, M.S., Kerfoot, C.J., Louca, V. and Krause, J. (2006). The effects of different predator species on antipredator behavior in the Trinidadian guppy, Poecilia reticulata. Naturwissenschaften, 93, 431439.CrossRefGoogle ScholarPubMed
Boyd, R. and Richerson, P.J. (1988). An evolutionary model of social learning: the effects of spatial and temporal variation. In Social Learning: Psychological and Biological Perspectives, ed. Thomas, R. and Zentall, B.G.G. New Jersey: Lawrence Erlbaum Associates, Inc.Google Scholar
Breden, F. and Stoner, G. (1987). Male predation risk determines female preference in the Trinidad guppy. Nature, 329, 831833.CrossRefGoogle Scholar
Breden, F., Novinger, D. and Schubert, A. (1995). The effect of experience on mate choice in the Trinidad guppy, Poecilia reticulata. Environmental Biology of Fishes, 42, 323328.CrossRefGoogle Scholar
Brown, G.E. and Godin, J.-G.J. (1999a). Chemical alarm signals in wild Trinidadian guppies (Poecilia reticulata). Canadian Journal of Zoology, 77, 562570.CrossRefGoogle Scholar
Brown, G.E. and Godin, J.-G. J. (1999b). Who dares, learns: chemical inspection behaviour and acquired predator recognition in a characin fish. Animal Behaviour, 57, 475481.CrossRefGoogle Scholar
Camacho-Cervantes, M., Garcia, C.M., Ojanguren, A.F. and Magurran, A.E. (2014a). Exotic invaders gain foraging benefits by shoaling with native fish. Open Science, 1.Google ScholarPubMed
Camacho-Cervantes, M., Ojanguren, A., Deacon, A., Ramnarine, I. and Magurran, A. (2014b). Association tendency and preference for heterospecifics in an invasive species. Behaviour, 151, 769780.CrossRefGoogle Scholar
Carvalho, G.R., Shaw, P.W., Magurran, A.E. and Seghers, B.H. (1991). Marked genetic-divergence revealed by allozymes among populations of the guppy Poecilia reticulata (Poeciliidae), in Trinidad. Biological Journal of the Linnean Society, 42, 389405.CrossRefGoogle Scholar
Carvalho, G.R., Shaw, P.W., Hauser, L., Seghers, B.H. and Magurran, A.E. (1996). Artificial introductions, evolutionary change and population differentiation in Trinidadian guppies (Poecilia reticulata: Poeciliidae). Biological Journal of the Linnean Society, 57, 219234.CrossRefGoogle Scholar
Casatti, L., Langeani, F. and Ferreira, C.P. (2006). Effects of physical habitat degradation on the stream fish assemblage structure in a pasture region. Environmental Management, V, 38, 974982.Google Scholar
Chapman, B.B., Morrell, L.J. and Krause, J. (2009). Plasticity in male courtship behaviour as a function of light intensity in guppies. Behavioral Ecology and Sociobiology, 63, 17571763.CrossRefGoogle Scholar
Chapman, F.A., Fitz-Coy, S.A., Thunberg, E.M. and Adams, C.M. (1997). United States of America trade in ornamental fish. Journal of the World Aquaculture Society, 28, 110.CrossRefGoogle Scholar
Chapple, D.G., Simmonds, S.M. and Wong, B. (2012). Can behavioral and personality traits influence the success of unintentional species introductions? Trends in Ecology and Evolution, 27, 5764.CrossRefGoogle ScholarPubMed
Chervinski, J. (1984). Salinity tolerance of the guppy, Poecilia reticulata Peters. Journal of Fish Biology, 24, 449452.CrossRefGoogle Scholar
Chung, K.S. (2001). Critical thermal maxima and acclimation rate of the tropical guppy Poecilla reticulata. Hydrobiologia, V, 462, 253257.CrossRefGoogle Scholar
Cote, J., Clobert, J., Brodin, T., Fogarty, S. and Sih, A. (2010). Personality-dependent dispersal: characterization, ontogeny and consequences for spatially structured populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 40654076.CrossRefGoogle ScholarPubMed
Courtenay, W.R. and Meffe, G.K. (1989). Small fishes in strange places: a review of introduced poeciliids. In Ecology and Evolution of Livebearing Fishes (Poeciliidae), ed. Meffe, G.K. and Snelson, F.F. New Jersey: Prentice Hall.Google Scholar
Crispo, E., Bentzen, P., Reznick, D.N., Kinnison, M.T. and Hendry, A.P. (2006). The relative influence of natural selection and geography on gene flow in guppies. Molecular Ecology, 15, 4962.CrossRefGoogle ScholarPubMed
Croft, D.P., Albanese, B., Arrowsmith, B.J., Botham, M., Webster, M. and Krause, J. (2003). Sex-biased movement in the guppy (Poecilia reticulata). Oecologia, 137, 6268.CrossRefGoogle ScholarPubMed
Deacon, A.E., Ramnarine, I.W. and Magurran, A.E. (2011). How reproductive ecology contributes to the spread of a globally invasive fish. PLoS ONE, 6, e24416.CrossRefGoogle Scholar
Deacon, A.E., Barbosa, M. and Magurran, A.E. (2014). Forced monogamy in a multiply mating species does not impede colonisation success. BMC Ecology, 14, 18.CrossRefGoogle Scholar
Dugatkin, L.A. and Godin, J.G.J. (1992). Predator inspection, shoaling and foraging under predation hazard in the Trinidadian guppy, Poecilia-reticulata. Environmental Biology of Fishes, 34, 265276.CrossRefGoogle Scholar
Dussault, G.V. and Kramer, D.L. (1981). Food and feeding behavior of the guppy, Poecilia reticulata (Pisces: Poeciliidae). Canadian Journal of Zoology, 59, 684701.CrossRefGoogle Scholar
Dyer, J.R.G., Croft, D.P., Morrell, L.J. and Krause, J. (2009). Shoal composition determines foraging success in the guppy. Behavioral Ecology, 20, 165171.CrossRefGoogle Scholar
Eakley, A.L. and Houde, A.E. (2004). Possible role of female discrimination against ‘redundant’ males in the evolution of colour pattern polymorphism in guppies. Proceedings of the Royal Society B: Biological Sciences, 271, S299S301.CrossRefGoogle ScholarPubMed
Elliott, J.M. (2004). Prey switching in four species of carnivorous stoneflies. Freshwater Biology, 49, 709720.CrossRefGoogle Scholar
Endler, J.A. (1987). Predation, light intensity and courtship behaviour in Poecilia reticulata (Pisces: Poeciliidae). Animal Behaviour, 35, 13761385.CrossRefGoogle Scholar
Endler, J.A. and Houde, A.E. (1995). Geographic variation in female preferences for male traits in Poecilia reticulata. Evolution, 456468.CrossRefGoogle Scholar
Evans, J.P. and Magurran, A.E. (2000). Multiple benefits of multiple mating in guppies. Proceedings of the National Academy of Sciences, USA, 97, 1007410076.CrossRefGoogle ScholarPubMed
Evans, J.P., Kelley, J.L., Ramnarine, I.W. and Pilastro, A. (2002). Female behaviour mediates male courtship under predation risk in the guppy (Poecilia reticulata). Behavioral Ecology and Sociobiology, 52, 496502.CrossRefGoogle Scholar
Fraser, D.F. and Lamphere, B.A. (2013). Experimental evaluation of predation as a facilitator of invasion success in a stream fish. Ecology, 94, 640649.CrossRefGoogle Scholar
Froese, R. and Pauly, D. (2014). FishBase. Available at: www.fishbase.org, accessed 21 April 2016.Google Scholar
García-Berthou, E. (2007). The characteristics of invasive fishes: what has been learned so far? Journal of Fish Biology, 71, 3355.CrossRefGoogle Scholar
Gasparini, C. and Pilastro, A. (2011). Cryptic female preference for genetically unrelated males is mediated by ovarian fluid in the guppy. Proceedings of the Royal Society B: Biological Sciences, 278, 24952501.CrossRefGoogle ScholarPubMed
Ghalambor, C.K., Reznick, D.N. and Walker, J.A. (2004). Constraints on adaptive evolution: the functional trade-off between reproduction and fast-start swimming performance in the Trinidadian guppy (Poecilia reticulata). The American Naturalist, 164, 3850.CrossRefGoogle ScholarPubMed
Ghalambor, C.K., Mckay, J.K., Carroll, S.P. and Reznick, D.N. (2007). Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology, 21, 394407.CrossRefGoogle Scholar
Ghosh, S.K., Tiwari, S.N., Sathyanarayan, T.S., et al. (2005). Larvivorous fish in wells target the malaria vector sibling species of the Anopheles culicifacies complex in villages in Karnataka, India. Transactions of the Royal Society of Tropical Medicine and Hygiene, 99, 101105.CrossRefGoogle ScholarPubMed
Godin, J.-G.J. (1995). Predation risk and alternative mating tactics in male Trinidadian guppies (Poecilia reticulata). Oecologia, 103, 224229.CrossRefGoogle ScholarPubMed
Godin, J.-G.J. and Briggs, S.E. (1996). Female mate choice under predation risk in the guppy. Animal Behaviour, 51, 117130.CrossRefGoogle Scholar
Godin, J.-G.J. and Davis, S.A. (1995). Who dares, benefits: predator approach behavior in the guppy (Poecilia-reticulata) deters predator pursuit. Proceedings of the Royal Society of London Series B – Biological Sciences, 259, 193200.Google Scholar
Godin, J.-G.J. and Smith, S.A. (1988). A fitness cost of foraging in the guppy. Nature, 333, 6971.CrossRefGoogle Scholar
Goodsell, J.A. and Kats, L.B. (1999). Effect of introduced mosquitofish on Pacific treefrogs and the role of alternative prey. Conservation Biology, 13, 921924.CrossRefGoogle Scholar
Grotkopp, E., Rejmánek, M. and Rost, T.L. (2002). Toward a causal explanation of plant invasiveness: seedling growth and life‐history strategies of 29 pine (Pinus) species. The American Naturalist, 159, 396419.CrossRefGoogle Scholar
Guevara-Fiore, P., Skinner, A. and Watt, P. (2009). Do male guppies distinguish virgin females from recently mated ones? Animal Behaviour, 77, 425431.CrossRefGoogle Scholar
Gundale, M.J., Pauchard, A., Langdon, B., et al. (2014). Can model species be used to advance the field of invasion ecology? Biological Invasions, 16, 591607.CrossRefGoogle Scholar
Haskins, C.P., Haskins, E.F., Mclaughlin, J.J.A. and Hewitt, R.E. (1961). Polymorphism and population structure in Lebistes reticulatus, an ecological study. In Vertebrate Speciation, ed. Blair, W. F. Austin, TX: University of Texas Press.Google Scholar
Hellmann, J.J., Byers, J.E., Bierwagen, B.G. and Dukes, J.S. (2008). Five potential consequences of climate change for invasive species. Conservation Biology, 22, 534543.CrossRefGoogle ScholarPubMed
Holman, L. and Kokko, H. (2013). The consequences of polyandry for population viability, extinction risk and conservation. Philosophical Transactions of the Royal Society B: Biological Sciences, 368.CrossRefGoogle ScholarPubMed
Holway, D.A. and Suarez, A.V. (1999). Animal behavior: an essential component of invasion biology. Trends in Ecology and Evolution, 14, 328330.CrossRefGoogle ScholarPubMed
Huizinga, M., Ghalambor, C. and Reznick, D. (2009). The genetic and environmental basis of adaptive differences in shoaling behaviour among populations of Trinidadian guppies, Poecilia reticulata. Journal of Evolutionary Biology, 22, 18601866.CrossRefGoogle ScholarPubMed
Jirotkul, M. (1999). Population density influences male–male competition in guppies. Animal Behaviour, 58, 11691175.CrossRefGoogle ScholarPubMed
Kelley, J.L. and Magurran, A.E. (2003a). Effects of relaxed predation pressure on visual predator recognition in the guppy. Behavioral Ecology and Sociobiology, 54, 225232.CrossRefGoogle Scholar
Kelley, J.L. and Magurran, A.E. (2003b). Learned predator recognition and antipredator responses in fishes. Fish and Fisheries, 4, 216226.CrossRefGoogle Scholar
Kelley, J.L., Evans, J.P., Ramnarine, I.W. and Magurran, A.E. (2003). Back to school: can antipredator behaviour in guppies be enhanced through social learning? Animal Behaviour, 65, 655662.CrossRefGoogle Scholar
Kieffer, J.D. and Colgan, P.W. (1992). The role of learning in fish behaviour. Reviews in Fish Biology and Fisheries, 2, 125143.CrossRefGoogle Scholar
Kiørboe, T., Saiz, E. and Viitasalo, M. (1996). Prey switching behaviour in the planktonic copepod Acartia tonsa. Marine Ecology Progress Series, 143, 6575.CrossRefGoogle Scholar
Klopfer, P.H. and Macarthur, R.H. (1960). Niche size and faunal diversity. American Naturalist, 94(877), 293300.CrossRefGoogle Scholar
Kolar, C.S. and Lodge, D.M. (2001). Progress in invasion biology: predicting invaders. Trends in Ecology and Evolution, 16, 199204.CrossRefGoogle ScholarPubMed
Kolbe, J.J., Glor, R.E., Schettino, L.R.G., et al. (2004). Genetic variation increases during biological invasion by a Cuban lizard. Nature, 431, 177181.CrossRefGoogle ScholarPubMed
Kotrschal, A., Rogell, B., Bundsen, A., et al. (2013). Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Current Biology, 23, 168171.CrossRefGoogle ScholarPubMed
Kotrschal, A., Corral-Lopez, A., Amcoff, M. and Kolm, N. (2014). A larger brain confers a benefit in a spatial mate search learning task in male guppies. Behavioral Ecology, aru227v1.Google Scholar
Krause, J. and Godin, J.-G.J. (1996). Influence of prey foraging posture on flight behavior and predation risk: predators take advantage of unwary prey. Behavioral Ecology, 7, 264271.CrossRefGoogle Scholar
Laland, K.N. and Reader, S.M. (1999). Foraging innovation in the guppy. Animal Behaviour, 57, 331340.CrossRefGoogle ScholarPubMed
Laland, K.N. and Williams, K. (1997). Shoaling generates social learning of foraging information in guppies. Animal Behaviour, 53, 11611169.CrossRefGoogle ScholarPubMed
Laland, K.N., Brown, C. and Krause, J. (2003). Learning in fishes: from three-second memory to culture. Fish and Fisheries, 4, 199202.CrossRefGoogle Scholar
Lee, C.E. (2002). Evolutionary genetics of invasive species. Trends in Ecology and Evolution, 17, 386391.CrossRefGoogle Scholar
Leung, B., Lodge, D.M., Finnoff, D., et al. (2002). An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proceedings of the Royal Society of London Series B: Biological Sciences, 269, 24072413.CrossRefGoogle ScholarPubMed
Lindholm, A.K., Breden, F., Alexander, H.J., et al. (2005). Invasion success and genetic diversity of introduced populations of guppies Poecilia reticulata in Australia. Molecular Ecology, 14, 36713682.CrossRefGoogle ScholarPubMed
Lockwood, J.L., Cassey, P. and Blackburn, T. (2005). The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution, 20, 223228.CrossRefGoogle ScholarPubMed
Lockwood, J.L., Cassey, P. and Blackburn, T.M. (2009). The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions, 15, 904910.CrossRefGoogle Scholar
López-Sepulcre, A., Gordon, S.P., Paterson, I.G., Bentzen, P. and Reznick, D.N. (2013). Beyond lifetime reproductive success: the posthumous reproductive dynamics of male Trinidadian guppies. Proceedings of the Royal Society B: Biological Sciences, 280.Google ScholarPubMed
Lowe, S., Browne, M., Boudjelas, S. and De Poorter, M. (2000). 100 of the World's Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG), a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), Auckland.Google Scholar
Luyten, P.H. and Liley, N.R. (1985). Geographic variation in the sexual behaviour of the guppy, Poecilia reticulata (Peters). Behaviour, 95, 164179.CrossRefGoogle Scholar
Luyten, P.H. and Liley, N.R. (1991). Sexual selection and competitive mating success of male guppies (Poecilia reticulata) from four Trinidad populations. Behavioral Ecology and Sociobiology, V, 28, 329336.CrossRefGoogle Scholar
Magellan, K., Pettersson, L.B. and Magurran, A.E. (2005). Quantifying male attractiveness and mating behaviour through phenotypic size manipulation in the Trinidadian guppy, Poecilia reticulata. Behavioral Ecology and Sociobiology, 58, 366374.CrossRefGoogle Scholar
Magurran, A.E. (1998). Population differentiation without speciation. Philosophical Transactions of the Royal Society of London, B, 353, 275286.CrossRefGoogle Scholar
Magurran, A.E. (2005). Evolutionary Ecology: The Trinidadian Guppy. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Magurran, A.E. and Seghers, B.H. (1990a). Population differences in the schooling behaviour of newborn guppies, Poecilia reticulata. Ethology, 84, 334342.CrossRefGoogle Scholar
Magurran, A.E. and Seghers, B.H. (1990b). Risk sensitive courtship in the guppy (Poecilia reticulata). Behaviour, 112, 194201.CrossRefGoogle Scholar
Magurran, A.E. and Seghers, B.H. (1991). Variation in schooling and aggression amongst guppy (Poecilia reticulata) populations in Trinidad. Behaviour, 118, 214234.CrossRefGoogle Scholar
Magurran, A.E. and Seghers, B.H. (1994). Sexual conflict as a consequence of ecology: evidence from guppy, Poecilia reticulata, populations in Trinidad. Proceedings of the Royal Society B: Biological Sciences, 225, 3136.Google Scholar
Magurran, A.E., Seghers, B.H., Carvalho, G.R. and Shaw, P.W. (1992). Behavioral consequences of an artificial introduction of guppies (Poecilia-reticulata) in N-Trinidad: evidence for the evolution of antipredator behavior in the wild. Proceedings of the Royal Society of London Series B: Biological Sciences, 248, 117122.Google Scholar
Magurran, A.E., Seghers, B.H., Shaw, P.W. and Carvalho, G.R. (1995). The behavioral diversity and evolution of guppy, Poecilia reticulata, populations in Trinidad. Advances in the Study of Behavior, Vol. 24. San Diego, CA: Academic Press Inc.Google Scholar
Marchetti, M.P., Moyle, P.B. and Levine, R. (2004a). Alien fishes in California watersheds: characteristics of successful and failed invaders. Ecological Applications, 14, 587596.CrossRefGoogle Scholar
Marchetti, M.P., Moyle, P.B. and Levine, R. (2004b). Invasive species profiling? Exploring the characteristics of non-native fishes across invasion stages in California. Freshwater Biology, 49, 646661.CrossRefGoogle Scholar
Marshall, M.C., Binderup, A.J., Zandonà, E., et al. (2012). Effects of consumer interactions on benthic resources and ecosystem processes in a neotropical stream. PLoS ONE, 7, e45230.CrossRefGoogle Scholar
Mcdowall, R.M. (2004). Shoot first, and then ask questions: a look at aquarium fish imports and invasiveness in New Zealand. New Zealand Journal of Marine and Freshwater Research, 38, 503510.CrossRefGoogle Scholar
Mills, M.D., Rader, R.B. and Belk, M.C. (2004). Complex interactions between native and invasive fish: the simultaneous effects of multiple negative interactions. Oecologia, 141, 713721.CrossRefGoogle ScholarPubMed
Morgan, D.L., Gill, H.S., Maddern, M.G. and Beatty, S.J. (2004). Distribution and impacts of introduced freshwater fishes in Western Australia. New Zealand Journal of Marine and Freshwater Research, 38, 511523.CrossRefGoogle Scholar
Murdoch, W.W., Avery, S. and Smyth, M.E.B. (1975). Switching in predatory fish. Ecology, 56, 10941105.CrossRefGoogle Scholar
Neff, B.D., Pitcher, T.E. and Ramnarine, I.W. (2008). Inter-population variation in multiple paternity and reproductive skew in the guppy. Molecular Ecology, 17, 29752984.CrossRefGoogle ScholarPubMed
O'Steen, S., Cullum, A.J. and Bennett, A.F. (2002). Rapid evolution of escape ability in Trinidadian guppies (Poecilia reticulata). Evolution, 56, 776784.Google ScholarPubMed
Ojanguren, A.F. and Magurran, A.E. (2004). Uncoupling the links between male mating tactics and female attractiveness. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, S427S429.CrossRefGoogle ScholarPubMed
Phillip, D.A.T. (1998). Biodiversity of Freshwater Fishes of Trinidad and Tobago, West Indies. St Andrews, UK: University of St Andrews.Google Scholar
Pitcher, T.J. (1986). Functions of Shoaling Behaviour in Teleosts. The Behaviour of Teleost Fishes. Berlin: Springer.Google Scholar
Pitcher, T.J., Magurran, A.E. and Winfield, I.J. (1982). Fish in larger shoals find food faster. Behavioral Ecology and Sociobiology, 10, 149151.CrossRefGoogle Scholar
Pitcher, T.J., Neff, B.D., Rodd, F.H. and Rowe, L. (2003). Multiple mating and sequential mate choice in guppies: females trade up. Proceedings of the Royal Society B: Biological Sciences, 270, 16231629.CrossRefGoogle ScholarPubMed
Pollux, B., Meredith, R., Springer, M., Garland, T. and Reznick, D. (2014). The evolution of the placenta drives a shift in sexual selection in livebearing fish. Nature, 513, 233236.CrossRefGoogle ScholarPubMed
Rahel, F.J. and Olden, J.D. (2008). Assessing the effects of climate change on aquatic invasive species. Conservation Biology, 22, 521533.CrossRefGoogle ScholarPubMed
Reader, S.M. and Laland, K.N. (2000). Diffusion of foraging innovations in the guppy. Animal Behaviour, 60, 175180.CrossRefGoogle ScholarPubMed
Reader, S.M. and Laland, K.N. (2003). Animal Innovation. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Reader, S.M., Kendal, J.R. and Laland, K.N. (2003). Social learning of foraging sites and escape routes in wild Trinidadian guppies. Animal Behaviour, 66, 729739.CrossRefGoogle Scholar
Reeve, A.J., Ojanguren, A.F., Deacon, A.E., et al. (2014). Interplay of temperature and light influences wild guppy (Poecilia reticulata) daily reproductive activity. Biological Journal of the Linnean Society, 111(3), 511520.CrossRefGoogle Scholar
Rehage, J.S. and Sih, A. (2004). Dispersal behavior, boldness, and the link to invasiveness: a comparison of four Gambusia species. Biological Invasions, 6, 379391.CrossRefGoogle Scholar
Rejmánek, M. and Richardson, D.M. (1996). What attributes make some plant species more invasive? Ecology, 77(6), 16551661.CrossRefGoogle Scholar
Reznick, D. and Endler, J.A. (1982). The impact of predation on life-history evolution in Trinidadian guppies (Poecilia reticulata). Evolution, 36, 160177.Google ScholarPubMed
Reznick, D.A., Bryga, H. and Endler, J.A. (1990). Experimentally induced life-history evolution in a natural population. Nature, 346, 357359.CrossRefGoogle Scholar
Reznick, D.N., Shaw, F.H., Rodd, F.H. and Shaw, R.G. (1997). Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science, 275, 19341937.CrossRefGoogle ScholarPubMed
Reznick, D., Butler, M.J. and Rodd, H. (2001). Life-history evolution in guppies. VII. The comparative ecology of high- and low-predation environments. American Naturalist, 157, 126140.CrossRefGoogle ScholarPubMed
Ringler, N.H. (1985). Individual and temporal variation in prey switching by brown trout, Salmo trutta. Copeia, 4, 918926.CrossRefGoogle Scholar
Rixon, C.A.M., Duggan, I.C., Bergeron, N.M.N., Ricciardi, A. and Macisaac, H.J. (2005). Invasion risks posed by the aquarium trade and live fish markets on the Laurentian Great Lakes. Biodiversity and Conservation, 14, 13651381.CrossRefGoogle Scholar
Rodd, F.H. and Sokolowski, M.B. (1995). Complex origins of variation in the sexual behaviour of male Trinidadian guppies, Poecilia reticulata: interactions between social environment, heredity, body size and age. Animal Behaviour, 49, 11391159.CrossRefGoogle Scholar
Rosenqvist, G. and Houde, A. (1997). Prior exposure to male phenotypes influences mate choice in the guppy. Poecilia reticulata. Behavioral Ecology, 8, 194198.CrossRefGoogle Scholar
Rowley, J.J.L., Rayner, T.S. and Pyke, G.H. (2005). New records and invasive potential of the poeciliid fish Phalloceros caudimaculatus. New Zealand Journal of Marine and Freshwater Research, 39, 10131022.CrossRefGoogle Scholar
Sakai, A.K., Allendorf, F.W., Holt, J.S., et al. (2001). The population biology of invasive species. Annual Review of Ecological Systems, 32, 305332.CrossRefGoogle Scholar
Schlupp, I. and Ryan, M.J. (1996). Mixed-species shoals and the maintenance of a sexual–asexual mating system in mollies. Animal Behaviour, 52, 885890.CrossRefGoogle Scholar
Seghers, B.H. (1974). Schooling behavior in guppy (Poecilia-reticulata): evolutionary response to predation. Evolution, 28, 486489.Google ScholarPubMed
Shaw, P., Carvalho, G., Seghers, B. and Magurran, A. (1992). Genetic consequences of an artificial introduction of guppies (Poecilia reticulata) in N. Trinidad. Proceedings of the Royal Society of London. Series B: Biological Sciences, 248, 111116.Google Scholar
Sievers, C., Willing, E.-M., Hoffmann, M., et al. (2012). Reasons for the invasive success of a guppy (Poecilia reticulata) population in Trinidad. PLoS ONE, 7, e38404.CrossRefGoogle ScholarPubMed
Sih, A., Bell, A. and Johnson, J.C. (2004). Behavioral syndromes: an ecological and evolutionary overview. Trends in Ecology and Evolution, 19, 372378.CrossRefGoogle ScholarPubMed
Simberloff, D. (2009). The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution, and Systematics, 40, 81102.CrossRefGoogle Scholar
Smith, B.R. and Blumstein, D.T. (2010). Behavioral types as predictors of survival in Trinidadian guppies (Poecilia reticulata). Behavioral Ecology, arq084.CrossRefGoogle Scholar
Smith, B.R. and Blumstein, D.T. (2012). Structural consistency of behavioural syndromes: does predator training lead to multi-contextual behavioural change? Behaviour, 149, 187213.CrossRefGoogle Scholar
Snell-Rood, E.C. (2013). An overview of the evolutionary causes and consequences of behavioural plasticity. Animal Behaviour, 85, 10041011.CrossRefGoogle Scholar
Soares, D. and Bierman, H.S. (2013). Aerial jumping in the Trinidadian guppy (Poecilia reticulata). PLoS ONE, 8, e61617.CrossRefGoogle ScholarPubMed
Sol, D. (2003). Behavioural flexibility: a neglected issue in the ecological and evolutionary literature. In Animal Innovation, Reader, S.M. and Laland, K.N., eds. Oxford: Oxford University Press, pp. 6382.CrossRefGoogle Scholar
Sol, D., Timmermans, S. and Lefebvre, L. (2002). Behavioural flexibility and invasion success in birds. Animal Behaviour, 63, 495516.CrossRefGoogle Scholar
Sol, D., Maspons, J., Vall-Llosera, M., et al. (2012). Unraveling the life history of successful invaders. Science, 337, 580583.CrossRefGoogle ScholarPubMed
Sol, D., Lapiedra, O. and Gonzalez-Lagos, C. (2013). Behavioural adjustments for a life in the city. Animal Behaviour, 85, 11011112.CrossRefGoogle Scholar
Templeton, C.N. and Shriner, W.M. (2004). Multiple selection pressures influence Trinidadian guppy (Poecilia reticulata) antipredator behavior. Behavioral Ecology, 15, 673678.CrossRefGoogle Scholar
Thibault, R.E. and Schultz, R.J. (1978). Reproductive adaptations among viviparous fishes (Cyprinodontiformes: Poeciliidae). Evolution, 32, 320333.CrossRefGoogle ScholarPubMed
Valero, A., Macias Garcia, C. and Magurran, A.E. (2008). Heterospecific harassment of native endangered goodeids by invasive guppies in Mexico. Biology Letters, 4, 149152.CrossRefGoogle ScholarPubMed
Van Oosterhout, C., Smith, A.M., Hanfling, B., et al. (2007). The guppy as a conservation model: implications of parasitism and inbreeding for reintroduction success. Conservation Biology, 21, 15731583.CrossRefGoogle ScholarPubMed
Vila-Gispert, A., Alcaraz, C. and Garcia-Berthou, E. (2005). Life-history traits of invasive fish in small Mediterranean streams. Biological Invasions, 7, 107116.CrossRefGoogle Scholar
Walther, G.-R., Roques, A., Hulme, P.E., et al. (2009). Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution, 24, 686693.CrossRefGoogle Scholar
Warburton, K. and Lees, N. (1996). Species discrimination in guppies: learned responses to visual cues. Animal Behaviour, 52, 371378.CrossRefGoogle Scholar
Wilbur, H.M. and Rudolf, V.H.W. (2006). Life‐history evolution in uncertain environments: bet hedging in time. The American Naturalist, 168, 398411.CrossRefGoogle ScholarPubMed
Williamson, M.H. and Fitter, A. (1996). The varying success of invaders. Ecology, 77, 16611666.CrossRefGoogle Scholar
Winge, O. (1937). Succession of broods in Lebistes. Nature, 140, 467.CrossRefGoogle Scholar
Wright, T.F., Eberhard, J.R., Hobson, E.A., Avery, M.L. and Russello, M.A. (2010). Behavioral flexibility and species invasions: the adaptive flexibility hypothesis. Ethology Ecology and Evolution, 22, 393404.CrossRefGoogle Scholar
Zandonà, E., Auer, S.K., Kilham, S.S., et al. (2011). Diet quality and prey selectivity correlate with life histories and predation regime in Trinidadian guppies. Functional Ecology, 25, 964973.CrossRefGoogle Scholar

References

Acquistapace, P., Aquiloni, L., Hazlett, B.A. and Gherardi, F. (2002). Multimodal communication in crayfish: sex recognition during mate search by male Austropotamobius pallipes. Canadian Journal Zoology, 80, 20412045.CrossRefGoogle Scholar
Acquistapace, P., Hazlett, B.A. and Gherardi, F. (2003). Unsuccessful predation and learning of predator cues by crayfish. Journal of Crustacean Biology, 23, 364370.CrossRefGoogle Scholar
Acquistapace, P., Daniels, W.H. and Gherardi, F. (2004). Behavioral responses to ‘alarm odors’ in potentially invasive and noninvasive crayfish species from aquaculture ponds. Behaviour, 141, 691702.Google Scholar
Alonso, F. and Martinez, R. (2006). Shelter competition between two invasive crayfish species: a laboratory study. Bulletin française de la Pêcheet de la Pisciculture, 380–381, 11211131.CrossRefGoogle Scholar
Anastácio, P.M., Correia, A.M. and Menino, J.P. (2005). Processes and patterns of plant destruction by crayfish: effects of crayfish size and development stages of rice. Archiv für Hydrobiologie, 162, 3751.CrossRefGoogle Scholar
Angeler, D.G., Sanchez-Carrillo, S., García, G. and Alvarez-Cobelas, M. (2001). The influence of Procambarus clarkii (Cambaridae, Decapoda) on water quality and sediment characteristics in a Spanish floodplain wetland. Hydrobiology, 464, 8898.Google Scholar
Aquiloni, L. and Gherardi, F. (2008a). Evidence of female cryptic choice in crayfish. Biology Letters, 4, 163165.CrossRefGoogle ScholarPubMed
Aquiloni, L. and Gherardi, F. (2008b). Mutual mate choice in crayfish: large body size is selected by both sexes, virginity by males only. Journal of Zoology London, 274, 171179.CrossRefGoogle Scholar
Aquiloni, L. and Gherardi, F. (2008c). Assessing mate size in the red swamp crayfish Procambarus clarkii: effects of visual versus chemical stimuli. Freshwater Biology, 53, 461469.CrossRefGoogle Scholar
Aquiloni, L. and Gherardi, F. (2008d). Extended mother-offspring relationships in crayfish: the return behaviour of Procambarus clarkii juveniles. Ethology, 114, 946954.CrossRefGoogle Scholar
Aquiloni, L., Ilheu, M. and Gherardi, F. (2005). Habitat use and dispersal of the invasive crayfish Procambarus clarkii in ephemeral water bodies in Portugal. Marine Freshwater Behaviour and Physiology, 38, 225236.CrossRefGoogle Scholar
Aquiloni, L., Buřič, M. and Gherardi, F. (2008). Crayfish females eavesdrop on fighting males before choosing the dominant mate. Current Biology, 18, 462463.CrossRefGoogle ScholarPubMed
Aquiloni, L., Massolo, A. and Gherardi, F. (2009). Sex identification in female crayfish is bimodal. Naturwissenschaften, 9, 103110.CrossRefGoogle Scholar
Axelsson, E.P., Nyström, P., Didenmark, J. and Brönmark, C. (1997). Crayfish predation on amphibian eggs and larvae. Amphibia-Reptilia, 18, 217228.CrossRefGoogle Scholar
Banha, F. and Anastácio, P.M. (2011). Interactions between invasive crayfish and native river shrimp. Knowledge and Management of Aquatic Ecosystems, 401, 17.CrossRefGoogle Scholar
Barbaresi, S. and Gherardi, F. (2000). Invasive crayfish: activity patterns of Procambarus clarkii in the rice fields of the Lower Guadalquivir (Spain). Archiv für Hydrobiologie, 150, 153168.Google Scholar
Barbaresi, S., Tricarico, E. and Gherardi, F. (2004). Factors inducing the intense burrowing activity by the red-swamp crayfish, Procambarus clarkii, an invasive species. Naturwissenschaften, 91, 342345.CrossRefGoogle ScholarPubMed
Bouchard, R.W. (1977). Distribution, systematic status and ecological notes on five poorly known species of crayfishes in western North America (Decapoda: Astacidea and Cambaridae). Freshwater Crayfish, 3, 409423.Google Scholar
Breithaupt, T. and Thiel, M. (eds.) (2011). Chemical Communication in Crustaceans. New York: Springer.CrossRefGoogle Scholar
Bubb, D.H., Lucas, M.C. and Thom, T.J. (2002). Winter movements and activity of the signal crayfish Pacifastacus leniusculus in an upland river, determined by radio telemetry. Hydrobiologia, 483, 111119.CrossRefGoogle Scholar
Bubb, D.H., Thom, T.J. and Lucas, M.C. (2004). Movement and dispersal of the invasive signal crayfish Pacifastacus leniusculus in upland rivers. Freshwater Biology, 49, 357368.CrossRefGoogle Scholar
Bubb, D.H., Thom, T.J. and Lucas, M.C. (2006). Movement, dispersal and refuge use of co-occurring introduced and native crayfish. Freshwater Biology, 51, 13591368.CrossRefGoogle Scholar
Buřič, M., Kouba, A. and Kozák, P. (2009a). Spring mating period in Orconectes limosus: the reason for movement. Aquatic Science, 71, 473477.CrossRefGoogle Scholar
Buřič, M., Kozák, P. and Kouba, A. (2009b). Movement patterns and ranging behavior of the invasive spiny-cheek crayfish in a small reservoir tributary. Fundamental Applied Limnology, 174, 329337.CrossRefGoogle Scholar
Buřič, M., Hulák, M., Kouba, A., Petrusek, A. and Kozák, P. (2011). A successful crayfish invader is capable of facultative parthenogenesis: a novel reproduction mode in decapod crustaceans. PloS ONE, 6, e20281.CrossRefGoogle ScholarPubMed
Butler, M.J. and Stein, R.A. (1985). An analysis of the mechanisms governing species replacements in crayfish. Oecologia, 66, 168177.CrossRefGoogle ScholarPubMed
Capinha, C., Larson, E.R., Tricarico, E., Olden, J.D. and Gherardi, F. (2013). Climate change, species invasions, and diseases threaten European native crayfishes. Conservation Biology, 27, 731740.CrossRefGoogle Scholar
Carpenter, J. (2005). Competition for food between an introduced crayfish and two fishes endemic to the Colorado River basin. Environmental Biology of Fishes, 72, 335342.CrossRefGoogle Scholar
Casale, A. and Busato, E. (2008). A real time extinction: the case of Carabus clatratus in Italy (Coleoptera, Carabidae). In Back to the Roots and Back to the Future. Towards a New Synthesis amongst Taxonomic, Ecological and Biogeographical Approaches in Carabidology, ed. Penev, L., Erwin, T. and Hassmann, T. Sofia, Bulgaria: Pensoft, pp. 353362.Google Scholar
Chucoll, C. (2013). Feeding ecology and ecological impact of an alien ‘warm-water’ omnivore in cold lakes. Limnologica, 43, 219229.CrossRefGoogle Scholar
Claussen, D.L., Hopper, R.A. and Sanker, A.M. (2000). The effects of temperature, body size, and hydration state on the terrestrial locomotion of the crayfish Orconectes rusticus. Journal of Crustacean Biology, 20, 218223.CrossRefGoogle Scholar
Correia, A.M. and Ferreira, O. (1995). Burrowing behavior of the introduced red swamp crayfish Procambarus clarkii (Decapoda: Cambaridae) in Portugal. Journal of Crustacean Biology, 15, 248257.CrossRefGoogle Scholar
Crandall, K.A. and Buhay, J.E. (2008). Global diversity of crayfish (Astacidae, Cambaridae, and Parastacidae–Decapoda) in freshwater. Hydrobiologia, 595, 295301.CrossRefGoogle Scholar
Cruz, M.J., Rebelo, R. and Crespo, E.G. (2006). Effects of an introduced crayfish, Procambarus clarkii, on the distribution of south-western Iberian amphibians in their breeding habitats. Ecography, 29, 329338.CrossRefGoogle Scholar
Delivering Alien Invasive Species Inventory for Europe (DAISIE) (2011). 100 of The Worst. Available at: http://www.europe-aliens.org/speciesTheWorst.do, accessed 21 April 2016.Google Scholar
Dana, E.D., García De Lomas, J. González, R. and Ortega, F. (2011). Effectiveness of dam construction to contain the invasive crayfish Procambarus clarkii in a Mediterranean mountain stream. Ecological Engineering, 37, 16071613.CrossRefGoogle Scholar
Dunoyer, L., Dijoux, L., Bollache, L. and Lagrue, C. (2014). Effects of crayfish on leaf litter breakdown and shredder prey: are native and introduced species functionally redundant? Biological Invasions, 16, 15451555.CrossRefGoogle Scholar
Elvey, W., Richardson, A.M.M. and Bermuta, L. (1996). Interactions between the introduced yabby, Cherax destructor, and the endemic crayfish, Astacopsis franklinii, in Tasmanian streams. Freshwater Crayfish, 11, 349363.Google Scholar
Ficetola, G.F., Siesa, M.E., Manenti, R., et al. (2011). Early assessment of the impact of alien species: differential consequences of an invasive crayfish on adult and larval amphibians. Diversity and Distributions, 17, 11411151.CrossRefGoogle Scholar
Gamradt, S.C. and Kats, L.B. (1996). Effect of introduced crayfish and mosquito fish on California newts (Taricha torosa). Conservation Biology, 10, 11551162.CrossRefGoogle Scholar
Garvey, J.E. and Stein, R.A. (1993). Evaluating how chela size influences the invasion potential of an introduced crayfish (Orconectes rusticus). American Midland Naturalist, 129, 172181.CrossRefGoogle Scholar
Garvey, J.E., Stein, R.A. and Thomas, H.M. (1994). Assessing how fish predation and interspecific prey competition influence a crayfish assemblage. Journal of Ecology, 75, 532547.CrossRefGoogle Scholar
Gherardi, F. (2002). Behaviour. In Biology of Freshwater Crayfish, ed. Holdich, D.M. Oxford, UK: Blackwell Science, pp. 258290.Google Scholar
Gherardi, F. (2006). Crayfish invading Europe: the case study of Procambarus clarkii. Marine and Freshwater Behaviour and Physiology, 39, 175191.CrossRefGoogle Scholar
Gherardi, F. (2007). Understanding the impact of invasive crayfish. In Biological Invaders in Inland Waters: Profiles, Distribution, and Threats, Springer Series in Invasion Ecology, ed. Gherardi, F. Invading Nature: Dordrecht, The Netherlands: Springer, pp. 507542.CrossRefGoogle Scholar
Gherardi, F. (2010). Invasive crayfish and freshwater fishes of the world. Revue Scientifique et technique dell'O.I.E. (Office International des Épizooties), 29, 241254.CrossRefGoogle ScholarPubMed
Gherardi, F. and Cioni, A. (2004). Agonism and interference competition in freshwater decapods. Behaviour, 141, 12971324.Google Scholar
Gherardi, F. and Daniels, W.H. (2004). Agonism and shelter competition between invasive and indigenous crayfish species. Canadian Journal of Zoology, 82, 19231932.CrossRefGoogle Scholar
Gherardi, F., Barbaresi, S. and Raddi, A. (1999). The agonistic behaviour in the red swamp crayfish, Procambarus clarkii: functions of the chelae. Freshwater Crayfish, 12, 233243.Google Scholar
Gherardi, F., Renai, B. and Corti, C. (2001). Crayfish predation on tadpoles: a comparison between a native (Austropotamobius pallipes) and an alien species (Procambarus clarkii). Bulletin française de la Pêcheet de la Pisciculture, 361, 659668.CrossRefGoogle Scholar
Gherardi, F., Tricarico, E. and Ilhéu, M. (2002). Movement patterns of an invasive crayfish, Procambarus clarkii, in a temporary stream of southern Portugal. Ethology Ecology and Evolution, 14, 183197.CrossRefGoogle Scholar
Gherardi, F., Aquiloni, L. and Tricarico, E. (2012). Behavioral plasticity, behavioral syndromes and animal personality in crustacean decapods: an imperfect map is better than no map. Current Zoology, 58, 567579.CrossRefGoogle Scholar
Gherardi, F., Coignet, A., Souty-Grosset, C., Spigoli, D. and Aquiloni, L. (2013). Global warming and the agonistic behavior of invasive crayfishes in Europe. Freshwater Biology, 58, 19581967.CrossRefGoogle Scholar
Gray, J. and Jackson, M.C. (2012). ‘Leaves and eats shoots’: direct terrestrial feeding can supplement invasive red swamp crayfish in times of need. PLoS ONE, 7, e42575.CrossRefGoogle Scholar
Griffiths, S.W., Collen, P. and Armstrong, J.D. (2004). Competition for shelter among over-wintering signal crayfish and juvenile Atlantic salmon. Journal of Fish Biology, 65, 436447.CrossRefGoogle Scholar
Guan, R.-Z. and Wiles, P.R. (1997). Ecological impact of introduced crayfish on benthic fishes in a British lowland river. Conservation Biology, 11, 641647.CrossRefGoogle Scholar
Haddaway, N.R., Wilcox, R.H., Heptonstall, R.E.A., et al. (2012). Predatory functional response and prey choice identify predation differences between native/invasive and parasitised/unparasitised crayfish. PLoS ONE, 7, e32229.CrossRefGoogle ScholarPubMed
Hanshew, B.A. and Garcia, T.S. (2012). Invasion of the shelter snatchers: behavioural plasticity in invasive red swamp crayfish, Procambarus clarkii. Freshwater Biology, 57, 22852296.CrossRefGoogle Scholar
Harvey, G.L., Moorhouse, T.P., Clifford, N.J., et al. (2011). Evaluating the role of invasive aquatic species as drivers of fine sediment-related river management problems: the case of the signal crayfish (Pacifastacus leniusculus). Progress in Physical Geography, 35, 517533.CrossRefGoogle Scholar
Hayes, N.M., Butkas, K.J., Olden, J.D. and Vander Zanden, M.J. (2009). Behavioural and growth differences between experienced and naïve populations of a native crayfish in the presence of invasive rusty crayfish. Freshwater Biology, 54, 18761887.CrossRefGoogle Scholar
Hazlett, B.A. (2000). Information use by an invading species: do invaders respond more to alarm odors than native species? Biological Invasions, 2, 289294.CrossRefGoogle Scholar
Hazlett, B.A., Acquistapace, P. and Gherardi, F. (2002). Differences in memory capabilities in invasive and native crayfish. Journal of Crustacean Biology, 22, 439448.CrossRefGoogle Scholar
Hazlett, B.A., Burba, A., Gherardi, F. and Acquistapace, P. (2003). Invasive species use a broader range of predation-risk cues than native species. Biological Invasions, 5, 223228.CrossRefGoogle Scholar
Hiley, P.D. (2003). The slow quiet invasion of signal crayfish (Pacifastacus leniusculus) in England – prospects for the white-clawed crayfish (Austropotamobius pallipes). In Management and Conservation of Crayfish. Proceedings of a conference held in Nottingham on 7th November (2002). Holdich, D.M. and Sibley, P.J. (eds). Bristol: Environment Agency, pp. 127138.Google Scholar
Hill, A.M. and Lodge, D.M. (1999). Replacement of resident crayfishes by an exotic crayfish: the roles of competition and predation. Ecological Applications, 9, 678690.Google Scholar
Hobbs, H.H., Jass, J.P. and Huner, J.V. (1989). A review of global crayfish introductions with particular emphasis on two North American species (Decapoda: Cambaridae). Crustaceana, 56, 299316.CrossRefGoogle Scholar
Hogger, J.B. (1988). Ecology, population biology and behaviour. In Freshwater Crayfish. Biology, Management and Exploitation, ed. Holdich, D.M. and Lowery, R.S. Portland, OR: Croom Helm and Timber Press, pp. 114144.Google Scholar
Holdich, D.M. and Black, J. (2007). The spiny-cheek crayfish, Orconectes limosus (Rafinesque, 1817) [Crustacea: Decapoda: Cambaridae], digs into the UK. Aquatic Invasions, 2, 115.CrossRefGoogle Scholar
Horwitz, P.H.J. and Richardson, A.M.M. (1986). An ecological classification of the burrows of Australian freshwater crayfish. Marine and Freshwater Research, 37, 237242.CrossRefGoogle Scholar
Hudina, S. and Hock, K. (2012). Behavioural determinants of agonistic success in invasive crayfish. Behavioural Processes, 91, 7781.CrossRefGoogle ScholarPubMed
Hudina, S., Lucić, A., Žganec, K. and Janković, S. (2011). Characteristics and movement patterns of a recent established invasive Pacifastacus leniusculus population in the river Mura, Croatia. Knowledge and Management of Aquatic Ecosystems, 403, 07.CrossRefGoogle Scholar
Hudina, S., Hock, K. and Žganec, K. (2014). The role of aggression in range expansion and biological invasions. Current Zoology, 60, 401409.CrossRefGoogle Scholar
Ilhéu, M., Acquistapace, P., Benvenuto, C. and Gherardi, F. (2003). Shelter use of the red-swamp crayfish (Procambarus clarkii) in dry-season stream pools. Archiv für Hydrobiologie, 157, 535546.CrossRefGoogle Scholar
Jaklič, M. and Vrezec, A. (2011). The first tropical alien crayfish species in European waters: the red claw Cherax quadricarinatus (von Martens, 1868) (Decapoda, Parastacidae). Crustaceana, 84, 651665.CrossRefGoogle Scholar
Johnson, F., Rice, S.P. and Reid, I. (2014). The activity of signal crayfish (Pacifastacus leniusculus) in relation to thermal and hydraulic dynamics of an alluvial stream, UK. Hydrobiologia, 724, 4154.CrossRefGoogle Scholar
Jonas, J.L., Claramunt, R.M., Fitzsimons, J. D., Marsden, J.E. and Ellrott, B.J. (2005). Estimates of egg deposition and effects of lake trout (Salvelinus namaycush) egg predators in three regions of the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 62, 22542264.CrossRefGoogle Scholar
Kawai, T. and Hiruta, M. (1999). Distribution of crayfish (Pacifastacus leniusculus and Cambaroides japonicus) in Lake Shikaribetsu and Shihoro, Hokkaido, Japan. Crayfish News, 21, 11.Google Scholar
Kouba, A., Petrusek, A. and Kozák, P. (2014). Continental-wide distribution of crayfish species in Europe: update and maps. Knowledge and Management of Aquatic Ecosyatems, 413, 05.CrossRefGoogle Scholar
Larson, E.R. and Magoulick, D.D. (2009). Does juvenile competition explain displacement of a native crayfish by an introduced crayfish? Biological Invasions, 11, 725735.CrossRefGoogle Scholar
Larson, E.R. and Olden, J.D. (2010). Latent extinction and invasion risk of crayfishes in the southeastern United States. Conservation Biology, 24, 10991110.CrossRefGoogle ScholarPubMed
Light, T. (2003). Success and failure in a lotic crayfish invasion: the roles of hydrologic variability and habitat alteration. Freshwater Biology, 48, 18861897.CrossRefGoogle Scholar
Light, T., Erman, D.C., Myrick, C. and Clark, J. (1995). Decline of the Shasta crayfish (Pacifastacus fortis Faxon) of northeastern California. Conservation Biology, 9, 15671577.CrossRefGoogle Scholar
Lodge, D.M., Deines, A., Gherardi, F., et al. (2012). Global introductions of crayfishes: evaluating the impact of species invasions on ecosystem services. Annual Review of Ecology, Evolution, and Systematics, 43, 449472.CrossRefGoogle Scholar
Matsuzaki, S.S., Sakamoto, M., Kawabe, K. and Takamura, N. (2012). A laboratory study of the effects of shelter availability and invasive crayfish on the growth of native stream fish. Freshwater Biology, 57, 874882.CrossRefGoogle Scholar
Miyake, M. and Miyashita, T. (2011). Identification of alien predators that should not be removed for controlling invasive crayfish threatening endangered odonates. Aquatic Conservation: Marine Freshwater Ecosystems, 21, 292298.CrossRefGoogle Scholar
Mkoji, G.M., Hofkin, B.V., Kuris, A.M., et al. (1999). Impact of the crayfish Procambarus clarkii on Schistosoma haematobium transmission in Kenya. The American Journal of Tropical Medicine and Hygiene, 61, 751759.CrossRefGoogle ScholarPubMed
Musil, M., Buřič, M., Policar, T., Kouba, A. and Kozák, P. (2010). Comparison of day and night activity between noble (Astacus astacus) and spiny-cheek crayfish (Orconectes limosus). Freshwater Crayfish, 17, 189193.Google Scholar
Nakata, K. and Goshima, S. (2003). Competition for shelter of preferred size between the native crayfish species Cambaroides japonicus and the alien crayfish species Pacifastacus leniusculus in Japan in relation to prior residence, sex difference, and body size. Journal of Crustacean Biology, 23, 897907.CrossRefGoogle Scholar
Nakata, K. and Goshima, S. (2006). Asymmetry in mutual predation between the endangered Japanese native crayfish Cambaroides japonicus and the North American invasive crayfish Pacifastacus leniusculus: a possible reason for species replacement. Journal of Crustacean Biology, 26, 134140.CrossRefGoogle Scholar
Pecor, K.W., Deering, C.M., Firnberg, M.T., Pastino, A.K. and Wolfson, S.J. (2010). The use of conspecific and heterospecific alarm cues by virile crayfish (Orconectes virilis) from an exotic population. Marine and Freshwater Behaviour and Physiology, 43, 3744.CrossRefGoogle Scholar
Perry, W.L., Feder, J.L., Dwyer, G. and Lodge, D.M. (2001a). Hybrid zone dynamics and species replacement between Orconectes crayfishes in a northern Wisconsin lake. Evolution, 55, 11531166.Google Scholar
Perry, W.L., Feder, J.L., Dwyer, G. and Lodge, D.M. (2001b). Implications of hybridization between introduced and resident Orconectes crayfishes. Conservation Biology, 15, 16561666.CrossRefGoogle Scholar
Peters, J.A. and Lodge, D.M. (2013). Habitat, predation, and coexistence between invasive and native crayfishes: prioritizing lakes for invasion prevention. Biological Invasions, 15, 24892502.CrossRefGoogle Scholar
Pintor, L.M., Sih, A. and Bauer, M.L. (2008). Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish. Oikos, 117, 16291636.CrossRefGoogle Scholar
Rahm, E.J., Griffith, S.A., Noltie, D.B. and DiStefano, R.J. (2005). Laboratory agonistic interactions demonstrate failure of an introduced crayfish to dominate two imperiled endemic crayfishes. Crustaceana, 78, 437456.CrossRefGoogle Scholar
Renai, B. and Gherardi, F. (2004). Predatory efficiency of crayfish: comparison between indigenous and non-indigenous species. Biological Invasions, 6, 8999.CrossRefGoogle Scholar
Ramalho, R.O. and Anástacio, P.M. (2011). Crayfish learning abilities: how does familiarization period affect the capture rate of a new prey item? Ecological Research, 26, 5358.CrossRefGoogle Scholar
Richman, N.I., Böhm, M., Adams, S.B., et al. (2015). Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20140060.CrossRefGoogle ScholarPubMed
Rodríguez, C.F., Bécares, E. and Fernández-Aláez, M. (2003). Shift from clear to turbid phase in Lake Chozas (NW Spain) due to the introduction of American red swamp crayfish (Procambarus clarkii). Hydrobiologia, 506–509, 421426.CrossRefGoogle Scholar
Rosewarne, P.J., Piper, A.T., Wright, R.M. and Dunn, A.M. (2013). Do low-head riverine structures hinder the spread of invasive crayfish? Case study of signal crayfish (Pacifastacus leniusculus) movements at a flow gauging weir. Management of Biological Invasions, 4, 273282.CrossRefGoogle Scholar
Sargent, L.W. and Lodge, D.M. (2014). Evolution of invasive traits in nonindigenous species: increased survival and faster growth in invasive populations of rusty crayfish (Orconectes rusticus). Evolutionary Applications, 7, 949961.CrossRefGoogle ScholarPubMed
Scalici, M., Chiesa, S., Scuderi, S., Celauro, D. and Gibertini, G. (2010). Population structure and dynamics of Procambarus clarkii (Girard, 1852) in a Mediterranean brackish wetland (Central Italy). Biological Invasions, 12, 14151425.CrossRefGoogle Scholar
Souty-Grosset, C., Holdich, D.M., Noël, P.Y., Reynolds, J.D. and Haffner, P. (eds) (2006). Atlas of Crayfish in Europe. Paris: Muséum national d'Histoire naturelle (Patrimoines naturels, 64).Google Scholar
Stebbing, P.D., Bentley, M.G. and Watson, G.J. (2003). Mating behaviour and evidence for a female released courtship pheromone in the signal crayfish Pacifastacus leniusculus. Journal of Chemical Ecology, 29, 465475.CrossRefGoogle ScholarPubMed
Stebbing, P.D., Watson, G.J. and Bentley, M.G. (2010). The response to disturbance chemicals and predator odours of juvenile and adult signal crayfish Pacifastacus leniusculus (Dana). Marine and Freshwater Behaviour and Physiology, 43, 183195.CrossRefGoogle Scholar
Szela, K. and Perry, W.L. (2013). Laboratory competition hierarchies between potentially invasive rusty crayfish (Orconectes rusticus) and native crayfishes of conservation concern. American Midland Naturalist, 169, 345353.CrossRefGoogle Scholar
Taylor, E.B., Boughman, J.W., Groenenboom, M., et al. (2006). Speciation in reverse: morphological and genetic evidence of the collapse of a three‐spined stickleback (Gasterosteus aculeatus) species pair. Molecular Ecology, 15, 343355.CrossRefGoogle ScholarPubMed
Tricarico, E., Gherardi, F., Giuliani, C., et al. (2012). How the invasive crayfish Procambarus clarkii and the native crab Potamonautes loveni can coexist in the Lake Naivasha catchment (Kenya). Book of Abstracts, The Crustacean Society Summer Meeting, 10th Colloquium Crustacea Decapoda Mediterranea, 3–7 June, Athens, p. 168.Google Scholar
Twardochleb, L.A., Olden, J.D. and Larson, E.R. (2013). A global meta-analysis of the ecological impacts of nonnative crayfish. Freshwater Science, 32, 13671382.CrossRefGoogle Scholar
Westman, K., Savolainen, R. and Julkunen, M. (2002). Replacement of the native crayfish Astacus astacus by the introduced species Pacifastacus leniusculus in a small, enclosed Finnish lake: a 30-year study. Ecography, 25, 5373.CrossRefGoogle Scholar
Wilson, K.A., Magnuson, J.J., Lodge, D.M., et al. (2004). A long-term rusty crayfish (Orconectes rusticus) invasion: dispersal patterns and community change in a north temperate lake. Canadian Journal of Fisheries and Aquatic Sciences, 61, 22552266.CrossRefGoogle Scholar
Wutz, S. and Geist, J. (2013). Sex- and size-specific migration patterns and habitat preferences of invasive signal crayfish (Pacifastacus leniusculus Dana). Limnologica, 43, 5966.CrossRefGoogle Scholar
Yue, G.H., Li, J.L., Wang, C.M., et al. (2010). High prevalence of multiple paternity in the invasive crayfish species, Procambarus clarkii. International Journal of Biological Sciences, 6, 107115.CrossRefGoogle ScholarPubMed

References

Ahrenholz, D.W. and Morris, J.A. (2010). Larval duration of the lionfish, Pterois volitans along the Bahamian Archipelago. Environmental Biology of Fishes, 88, 305309.CrossRefGoogle Scholar
Albins, M.A. (2013). Effects of invasive Pacific red lionfish Pterois volitans versus a native predator on Bahamian coral-reef fish communities. Biological Invasions, 15, 2943.CrossRefGoogle Scholar
Albins, M.A. (2015). Invasive Pacific lionfish Pterois volitans reduce abundance and species richness of native Bahamian coral-reef fishes. Marine Ecology Progress Series, 522, 231243.CrossRefGoogle Scholar
Albins, M.A. and Hixon, M.A. (2008). Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Marine Ecology Progress Series, 367, 233238.CrossRefGoogle Scholar
Albins, M.A. and Hixon, M.A. (2013). Worst case scenario: potential long-term effects of invasive predatory lionfish (Pterois volitans) on Atlantic and Caribbean coral-reef communities. Environmental Biology of Fishes, 96, 11511157.CrossRefGoogle Scholar
Albins, M.A. and Lyons, P.J. (2012). Invasive red lionfish Pterois volitans blow directed jets of water at prey fish. Marine Ecology Progress Series, 448, 15.CrossRefGoogle Scholar
Bacheler, N.M., Whitfield, P.E., Muñoz, R.C., et al. (2015). Movement of invasive adult lionfish Pterois volitans using telemetry: importance of controls to estimate and explain variable detection probabilities. Marine Ecology Progress Series, 527, 205220.CrossRefGoogle Scholar
Barbour, A., Montgomery, M., Adamson, A., Díaz-Ferguson, E. and Silliman, B. (2010). Mangrove use by the invasive lionfish Pterois volitans. Marine Ecology Progress Series, 401, 291294.CrossRefGoogle Scholar
Benkwitt, C.E. (2014). Non-linear effects of invasive lionfish density on native coral-reef fish communities. Biological Invasions, 17, 13831395.CrossRefGoogle Scholar
Bernadsky, G. and Goulet, D. (1991). A natural predator of the lionfish, Pterois miles. Copeia, 1, 231234.Google Scholar
Black, A. N., Weimann, S.R., Imhoff, V.E., Richter, M.L. and Itzkowitz, M. (2014). A differential prey response to invasive lionfish, Pterois volitans: prey naiveté and risk-sensitive courtship. Journal of Experimental Marine Biology and Ecology, 460, 17.CrossRefGoogle Scholar
Burnett, S. (1997). Colonizing cane toads cause population declines in native predators: reliable anecdotal information and management implications. Pacific Conservation Biology, 3, 6572.CrossRefGoogle Scholar
Claydon, J.A.B., Calosso, M.C. and Jacob, S.E. (2009). The red lionfish invasion of South Caicos, Turks and Caicos Islands. Proceedings of the Gulf and Caribbean Fisheries Institute, 400402.Google Scholar
Claydon, J., Calosso, M. and Traiger, S. (2012). Progression of invasive lionfish in seagrass, mangrove and reef habitats. Marine Ecology Progress Series, 448, 119129.CrossRefGoogle Scholar
Cohen, A.S. and Olek, A.J. (1989). An extract of lionfish (Pterois volitans) spine tissue contains acetylcholine and a toxin that affects neuromuscular transmission. Toxicon, 27, 13671376.CrossRefGoogle Scholar
Côté, I.M. and Green, S.J. (2012). Potential effects of climate change on a marine invasion: the importance of current context. Current Zoology, 58, 18.CrossRefGoogle Scholar
Côté, I.M., and Hixon, M.A. (2013). Predatory fish invaders: Insights from Indo-Pacific lionfish in the western Atlantic and Caribbean. Biological Conservation, 164, 5061.CrossRefGoogle Scholar
Côté, I., Green, S., Morris, J., Akins, J. and Steinke, D. (2013). Diet richness of invasive Indo-Pacific lionfish revealed by DNA barcoding. Marine Ecology Progress Series, 472, 249256.CrossRefGoogle Scholar
Côté, I.M., Darling, E.S., Malpica-Cruz, L., et al. (2014). What doesn't kill you makes you wary? Effect of repeated culling on the behavior of an invasive predator. PLoS ONE, 9, e94248.CrossRefGoogle ScholarPubMed
Cure, K., Benkwitt, C.E., Kindinger, T.L., et al. (2012). Comparative behavior of red lionfish Pterois volitans on native Pacific versus invaded Atlantic coral reefs. Marine Ecology Progress Series, 467, 181192.CrossRefGoogle Scholar
Cure, K., McIlwain, J. and Hixon, M. (2014). Habitat plasticity in native Pacific red lionfish Pterois volitans facilitates successful invasion of the Atlantic. Marine Ecology Progress Series, 506, 243253.CrossRefGoogle Scholar
Elton, C.S. (1958). The Ecology of Invasions by Animals and Plants. New York: Wiley.CrossRefGoogle Scholar
Fishelson, L. (1975). Ethology and reproduction of pteroid fishes found in the Gulf of Aqaba (Red Sea), especially Dendrochirus brachypterus (Cuvier), (Pteroidae, Teleostei). Pubblicazionidella Stazione Zoologica di Napoli, 39 (Suppl.), 635656.Google Scholar
Fishelson, L. (1997). Experiments and observations on food consumption, growth and starvation in Dendrochirus brachypterus and Pterois volitans (Pteroinae, Scorpaenidae). Environmental Biology of Fishes, 50, 391403.CrossRefGoogle Scholar
Frazer, T.K., Jacoby, C.A., Edwards, M.A., Barry, S.C. and Manfrino, C.M. (2012). Coping with the lionfish invasion: can targeted removals yield beneficial effects? Reviews in Fisheries Science, 20, 185191.CrossRefGoogle Scholar
Freshwater, D.W., Hines, A., Parham, S., et al. (2009). Mitochondrial control region sequence analyses indicate dispersal from the US East Coast as the source of the invasive Indo-Pacific lionfish Pterois volitans in the Bahamas. Marine Biology, 156, 12131221.CrossRefGoogle Scholar
García-Berthou, E. (2007). The characteristics of invasive fishes: what has been learned so far? Journal of Fish Biology, 71, 3355.CrossRefGoogle Scholar
Green, S.J. and Côté, I.M. (2009). Record densities of Indo-Pacific lionfish on Bahamian coral reefs. Coral Reefs, 28, 107.CrossRefGoogle Scholar
Green, S.J., Akins, J.L. and Côté, I.M. (2011). Foraging behavior and prey consumption in the Indo-Pacific lionfish on Bahamian coral reefs. Marine Ecology Progress Series, 433, 159167.CrossRefGoogle Scholar
Green, S.J., Akins, J.L., Maljković, A. and Côté, I.M. (2012). Invasive lionfish drive Atlantic coral reef fish declines. PLoS ONE, 7, e32596.CrossRefGoogle ScholarPubMed
Green, S.J., Dulvy, N.K., Brooks, A.M., et al. (2014). Linking removal targets to the ecological effects of invaders: a predictive model and field test. Ecological Applications, 24, 13111322.CrossRefGoogle Scholar
Hackerott, S., Valdivia, A., Green, S.J., et al. (2013). Native predators do not influence invasion success of Pacific lionfish on Caribbean reefs. PLoS ONE, 8, e68259.CrossRefGoogle Scholar
Halstead, B.W., Chitwood, M.J. and Modglin, F.R. (1955). The anatomy of the venom apparatus of the zebrafish, Pterois volitans (Linnaeus). The Anatomical Record, 122, 317333.CrossRefGoogle ScholarPubMed
Hornstra, H.M., Herrel, A. and Montgomery, W.L. (2004). Gas bladder movement in lionfishes: a novel mechanism for control of pitch. Journal of Morphology Special Issue: Seventh International Congress of Vertebrate Morphology.Google Scholar
Johnston, M.W. and Purkis, S.J. (2015). Hurricanes accelerated the Florida-Bahamas lionfish invasion. Global Change Biology, 21, 22492260.CrossRefGoogle ScholarPubMed
Jud, Z.R. and Layman, C.A. (2012). Site fidelity and movement patterns of invasive lionfish, Pterois spp., in a Florida estuary. Journal of Experimental Marine Biology and Ecology, 414–415, 6974.CrossRefGoogle Scholar
Jud, Z., Layman, C., Lee, J. and Arrington, D. (2011). Recent invasion of a Florida (USA) estuarine system by lionfish Pterois volitans/P. miles. Aquatic Biology, 13, 2126.CrossRefGoogle Scholar
Jud, Z.R., Nichols, P.K. and Layman, C.A. (2015). Broad salinity tolerance in the invasive lionfish Pterois spp. may facilitate estuarine colonization. Environmental Biology of Fishes, 98, 135143.CrossRefGoogle Scholar
Kendall, J.J. (1990). Further evidence of cooperative foraging by the turkeyfish, Pterois miles in the Gulf of Aqaba, Red Sea with comments on safety and first aid. In Proceedings of the American Academy of Underwater Sciences Tenth Annual Scientific Diving Symposium. St. Petersburg, FL: University of South Florida, pp. 209223.Google Scholar
Kimball, M.E., Miller, J.M. Whitfield, P.E and Hare, J.A. (2004). Thermal tolerance and potential distribution of invasive lionfish (Pterois volitans/miles complex) on the east coast of the United States. Marine Ecology Progress Series, 283, 269278.CrossRefGoogle Scholar
Kindinger, T.L. (2015). Behavioral response of native Atlantic territorial three spot damselfish (Stegastes planifrons) toward invasive Pacific red lionfish (Pterois volitans). Environmental Biology of Fishes, 98, 487498.CrossRefGoogle Scholar
Kinlan, B.P. and Hastings, A. (2005). Rates of population spread and geographic range expansion: what exotic species tell us. In Species Invasions: Insights into Ecology, Evolution, and Biogeography, ed. Sax, D.F., Stachowicz, J.J. and Gaines, S.D. Sunderland, MA: Sinauer Associates, pp. 381419.Google Scholar
Kizer, K.W., McKinney, H.E. and Auerbach, P.S. (1985). Scorpaenidae envenomation: a five-year poison center experience. The Journal of the American Medical Association, 253, 807810.CrossRefGoogle ScholarPubMed
Kulbicki, M., Beets, J., Chabanet, P., et al. (2012). Distributions of Indo-Pacific lionfishes Pterois spp. in their native ranges: implications for the Atlantic invasion. Marine Ecology Progress Series, 446, 189205.CrossRefGoogle Scholar
Layman, C.A. and Allgeier, J.E. (2012). Characterizing trophic ecology of generalist consumers: a case study of the invasive lionfish in the Bahamas. Marine Ecology Progress Series, 448, 131141.CrossRefGoogle Scholar
Leis, J.M., Wright, K.J. and Johnson, R.N. (2007). Behavior that influences dispersal and connectivity in the small, young larvae of a reef fish. Marine Biology, 153, 103117.CrossRefGoogle Scholar
Lesser, M.P. and Slattery, M. (2011). Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biological Invasions, 13, 18551868.CrossRefGoogle Scholar
Luiz, O., Floeter, S., Rocha, L. and Ferreira, C. (2013). Perspectives for the lionfish invasion in the South Atlantic: are Brazilian reefs protected by the currents? Marine Ecology Progress Series, 485, 17.CrossRefGoogle Scholar
Maljković, A., Van Leeuwen, T.E. and Cove, S.N. (2008). Predation on the invasive red lionfish Pterois volitans (Pisces: Scorpaenidae), by native groupers in the Bahamas. Coral Reefs, 27, 501.CrossRefGoogle Scholar
Marini, F. (2002). The lionfish info sheet: captive care and home husbandry. Reefkeeping. Available at: http://www.reefkeeping.com/issues/2002-11/fm/feature/, accessed 21 April 2016.Google Scholar
Marsh-Hunkin, K.E., Gochfeld, D.J. and Slattery, M. (2013). Antipredator responses to invasive lionfish, Pterois volitans: interspecific differences in cue utilization by two coral reef gobies. Marine Biology, 160, 10291040.CrossRefGoogle Scholar
Morris, J.A.J. (2009). The biology and ecology of the invasive Indo-Pacific lionfish. PhD thesis. Raleigh, NC: North Carolina State University.Google Scholar
Morris, J.A. and Akins, J.L. (2009). Feeding ecology of invasive lionfish (Pterois volitans) in the Bahamian archipelago. Environmental Biology of Fishes, 86, 389398.CrossRefGoogle Scholar
Morris, J.A.J. and Whitfield, P.E. (2009). Biology, ecology, control and management of the invasive Indo-Pacific lionfish: an updated integrated assessment. NOAA Technical Memorandum.Google Scholar
Morris, J.A.J., Sullivan, C.V. and Govoni, J.J. (2011). Oogenesis and spawn formation in the invasive lionfish, Pterois miles and Pterois volitans. Scientia Marina, 75, 147154.CrossRefGoogle Scholar
Moyer, J.T. and Zaiser, M.J. (1981). Social organization and spawning behaviour of the Pteroine fish Dendrochirus zebra at Miyake-jima, Japan. Japanese Journal of Ichthyology, 28, 5269.Google Scholar
Mumby, P.J., Harborne, A.R. and Brumbaugh, D.R. (2011). Grouper as a natural biocontrol of invasive lionfish. PLoS ONE, 6, e21510.CrossRefGoogle ScholarPubMed
Muñoz, R.C., Currin, C.A. and Whitfield, P.E. (2011). Diet of invasive lionfish on hard bottom reefs of the Southeast USA: insights from stomach contents and stable isotopes. Marine Ecology Progress Series, 432, 181193.CrossRefGoogle Scholar
Naumann, M.S. and Wild, C. (2013). Foraging association of lionfish and moray eels in a Red Sea seagrass meadow. Coral Reefs, 32, 1111.CrossRefGoogle Scholar
Potts, J.C., Berrane, D. and Morris, J.A.J. (2011). Age and growth of lionfish from the western North Atlantic. Proceedings of the 63rd Gulf and Caribbean Fisheries Institute, 63, 314.Google Scholar
Randall, J.E., Allen, G.R. and Steene, R.C. (1996). Fishes of the Great Barrier Reef and Coral Sea. Revised and Expanded. Honolulu, Hawaii: University of Hawaii Press.Google Scholar
Raymond, W.W., Albins, M.A. and Pusack, T.J. (2015). Competitive interactions for shelter between invasive Pacific red lionfish and native Nassau grouper. Environmental Biology of Fishes, 98, 5765.CrossRefGoogle Scholar
Ruiz-Carus, R., Matheson, R.E., Roberts, D.E. and Whitfield, P.E. (2006). The western Pacific red lionfish, Pterois volitans (Scorpaenidae), in Florida: evidence for reproduction and parasitism in the first exotic marine fish established in state waters. Biological Conservation, 128, 384390.CrossRefGoogle Scholar
Schiel, D.R., Kingsford, M.J. and Choat, J.H. (1986). Depth distribution and abundance of benthic organisms and fishes at the subtropical Kermadec Islands. New Zealand Journal of Marine and Freshwater Research, 20, 521535.CrossRefGoogle Scholar
Schofield, P.J. (2009). Geographic extent and chronology of the invasion of non-native lionfish (Pterois volitans [Linnaeus 1758] and P. miles [Bennett 1828]) in the Western North Atlantic and Caribbean Sea. Aquatic Invasions, 4, 473479.CrossRefGoogle Scholar
Schofield, P.J. (2010). Update on geographic spread of invasive lionfishes (Pterois volitans [Linnaeus, 1758] and P. miles [Bennett, 1828]) in the Western North Atlantic Ocean, Caribbean Sea and Gulf of Mexico. Aquatic Invasions, 5, S117S122.CrossRefGoogle Scholar
Semmens, B.X., Buhle, E.R., Salomon, A.K. and Pattengill-Semmens, C.V. (2004). A hotspot of non-native marine fishes: evidence for the aquarium trade as an invasion pathway. Marine Ecology Progress Series, 266, 239244.CrossRefGoogle Scholar
Sikkel, P.C., Tuttle, L.J., Cure, K., Coile, A.M. and Hixon, M.A. (2014). Low susceptibility of invasive red lionfish (Pterois volitans) to a generalist ectoparasite in both its introduced and native ranges. PLoS ONE, 9, e95854.CrossRefGoogle ScholarPubMed
Sutherland, W.J., Clout, M., Côté, I.M., et al. (2010). A horizon scan of global conservation issues for 2010. Trends in Ecology and Evolution, 25, 17.CrossRefGoogle ScholarPubMed
Tamburello, N. and Côté, I.M. (2014). Movement ecology of Indo-Pacific lionfish on Caribbean coral reefs and its implications for invasion dynamics. Biological Invasions, 17, 16391653.CrossRefGoogle Scholar
Valdez-Moreno, M., Quintal-Lizama, C., Gómez-Lozano, R. and del C. García-Rivas, M. (2012). Monitoring an alien invasion: DNA barcoding and the identification of lionfish and their prey on coral reefs of the Mexican Caribbean. PLoS ONE, 7, e36636.CrossRefGoogle ScholarPubMed
Vetrano, S.J., Lebowitz, J.B. and Marcus, S. (2002). Lionfish envenomation. The Journal of Emergency Medicine, 23, 379382.CrossRefGoogle ScholarPubMed
Whitfield, P.E., Gardner, T., Vives, S.P., et al. (2002). Biological invasion of the Indo-Pacific lionfish Pterois volitans along the Atlantic coast of North America. Marine Ecology Progress Series, 235, 289297.CrossRefGoogle Scholar
Whitfield, P.E., Hare, J.A., David, A.W., et al. (2007). Abundance estimates of the Indo-Pacific lionfish Pterois volitans/miles complex in the Western North Atlantic. Biological Invasions, 9, 5364.CrossRefGoogle Scholar

References

Abellán, P., Carrete, M., Anadón, J.D., Cardador, L. and Tella, J.L. (2016). Non-random patterns and temporal trends (1912–2012) in the transport, introduction and establishment of exotic birds in Spain and Portugal. Diversity and Distributions, 22(3), 263373.CrossRefGoogle Scholar
Alpert, P. (2006). The advantages and disadvantages of being introduced. Biological Invasions, 8, 15231534.CrossRefGoogle Scholar
Archard, G.A. and Braithwaite, V.A. (2010). The importance of wild populations in studies of animal temperament. Journal of Zoology, 281, 149160.CrossRefGoogle Scholar
Beissinger, S.R. (2001). Trade in live wild birds: potentials, principles and practices of sustainable use. In Conservation of Exploited Species, ed. Reynolds, J.D., Mace, G.M., Redford, K.H. and Robinson, J.G. Cambridge: Cambridge University Press, pp. 182202.Google Scholar
Biro, P.A. and Dingemanse, N.J. (2009). Sampling bias resulting from animal personality. Trends in Ecology and Evolution, 24, 6667.CrossRefGoogle ScholarPubMed
Blackburn, T.M. and Cassey, P. (2007). Patterns of non‐randomness in the exotic avifauna of Florida. Diversity and Distributions, 13, 519526.CrossRefGoogle Scholar
Blackburn, T.M. and Duncan, R.P. (2001). Establishment patterns of exotic birds are constrained by non‐random patterns in introduction. Journal of Biogeography, 28, 927939.CrossRefGoogle Scholar
Blackburn, T.M., Lockwood, J.L. and Cassey, P.B. (2009). Avian Invasions: The Ecology and Evolution of Exotic Birds. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Blackburn, T.M., Gaston, K.J. and Parnell, M. (2010). Changes in non-randomness in the expanding introduced avifauna of the world. Ecography, 33, 168174.CrossRefGoogle Scholar
Blackburn, T.M. Essl, F., Evans, T., et al. (2011). A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biology, 12, e1001850.CrossRefGoogle Scholar
Blackburn, T.M., Su, S. and Cassey, P. (2014). A potential metric of the attractiveness of bird song to humans. Ethology, 120, 305312.CrossRefGoogle Scholar
Blackburn, T.M., Dyer, E., Su, S. and Cassey, P. (2015). Long after the event, or four things we (should) know about bird invasions. Journal of Ornithology, doi 10.1007/s10336-015-1155-z.CrossRefGoogle Scholar
Bolnick, D.I., Svanbäck, R., Fordyce, J.A., et al. (2003). The ecology of individuals: incidence and implications of individual specialization. American Naturalist, 161, 128.CrossRefGoogle ScholarPubMed
Bortolotti, G.R., Marchant, T., Blas, J. and Cabezas, S. (2009). Tracking stress: localisation, deposition and stability of corticosterone in feathers. Journal of Experimental Biology, 212, 14771482.CrossRefGoogle ScholarPubMed
Bortolotti, G.R., Marchant, T.A., Blas, J. and German, T. (2008). Corticosterone in feathers is a long-term, integrated measure of avian stress physiology. Functional Ecology, 22, 494500.CrossRefGoogle Scholar
Butler, C.J. (2003). Population Biology of the Introduced Rose Ringed Parakeet Psittacula krameri in the UK. PhD thesis. Oxford, UK: University of Oxford.Google Scholar
Butler, C.J. (2005). Feral parrots in the continental United States and United Kingdom: past, present, and future. Journal of Avian Medicine and Surgery, 19, 142149.CrossRefGoogle Scholar
Cabezas, S., Carrete, M., Tella, J.L., Marchant, T.A. and Bortolotti, G.R. (2013). Differences in acute stress responses between wild-caught and captive-bred birds: a physiological mechanism contributing to current avian invasions? Biological Invasions, 15, 521527.CrossRefGoogle Scholar
Cantú, J.C., Sánchez, M.E., Groselet, M. and Silva, J. (2007). The Illegal Parrot Trade in Mexico: A Comprehensive Assessment. Washington DC: Defenders of Wildlife.Google Scholar
Carrete, M. and Tella, J.L. (2008a). Non-native wildlife risk assessment: a call for scientific inquiry response. Frontiers in Ecology and Environment, 10, 466467.CrossRefGoogle Scholar
Carrete, M. and Tella, J.L. (2008b). Wild-bird trade and exotic invasions: a new link of conservation concern? Frontiers in Ecology and Environment, 6, 207211.CrossRefGoogle Scholar
Carrete, M. and Tella, J.L. (2011). Inter-individual variability in fear of humans and relative brain size of the species are related to contemporary urban invasion in birds. PLoS ONE, 6, e18859.CrossRefGoogle ScholarPubMed
Carrete, M. and Tella, J.L. (2013). High individual consistency in fear of humans throughout the adult lifespan of rural and urban burrowing owls. Scientific Reports, 3, 3524.CrossRefGoogle Scholar
Carrete, M., Edelaar, P., Blas, J., et al. (2012). Don't neglect pre-establishment individual selection in deliberate introductions. Trends in Ecology and Evolution, 27, 6768.CrossRefGoogle ScholarPubMed
Cassey, P., Blackburn, T.M., Sol, D., et al. (2004). Global patterns of introduction effort and establishment success in birds. Proceedings of the Royal Society of London B: Biological Sciences (Suppl.), 271, S405S408.CrossRefGoogle ScholarPubMed
Catford, J.A., Jansson, R. and Nilsson, C. (2009). Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions, 15, 2240.CrossRefGoogle Scholar
Chapple, D.G., Simmonds, S.M. and Wong, B.B.M. (2012). Can behavioral and personality traits influence the success of unintentional species introductions? Trends in Ecology and Evolution, 27, 5764.CrossRefGoogle ScholarPubMed
Charlesworth, D. and Charlesworth, B. (1987). Inbreeding depression and its evolutionary consequences. Annual Review in Ecology and Systematics, 18, 237268.CrossRefGoogle Scholar
Chiron, F., Shirley, S. and Kark, S. (2009). Human-related processes drive the richness of exotic birds in Europe. Proceedings of the Royal Society B: Biological Sciences, 276, 4753.CrossRefGoogle ScholarPubMed
Clavero, M., Nores, C., Kubersky-Piredda, S. and Centeno-Cuadros, A. (2015). Interdisciplinarity to reconstruct historical introductions: solving the status of cryptogenic crayfish. Biological Review, doi: 10.1111/brv.12205.CrossRefGoogle Scholar
Cooney, R. and Jepson, P. (2006). The international wild bird trade: what's wrong with blanket bans? Oryx, 40, 1823.CrossRefGoogle Scholar
Costello, C.J. and Solow, A.R. (2003). On the pattern of discovery of introduced species. Proceedings of the National Academy of Sciences, USA, 100, 33213323.CrossRefGoogle ScholarPubMed
Delivering Alien Invasive Species Inventory for Europe (DAISIE) (2011). 100 of The Worst. Available at: http://www.europe-aliens.org/speciesTheWorst.do, accessed 21 April 2016.Google Scholar
De Boer, S.F., Van Der Vegt, B.J. and Koolhaas, J.M. (2003). Individual variation in aggression of feral rodent strains: a standard for the genetics of aggression and violence? Behavior Genetics, 33, 485501.CrossRefGoogle ScholarPubMed
Dehnen-Schmutz, K., Touza, J., Perrings, C. and Williamson, M. (2007). A century of the ornamental plant trade and its impact on invasion success. Diversity and Distributions, 13, 527534.CrossRefGoogle Scholar
Dooling, R.J., Mulligan, J.A. and Miller, J.D. (1971). Auditory sensitivity and song spectrum of the common canary (Serinus canarius). Journal of Acoustical Society of America, 50, 700708.CrossRefGoogle Scholar
Edelaar, P. and Tella, J.L. (2012). Managing non‐native species: don't wait until their impacts are proven. Ibis, 154, 635637.CrossRefGoogle Scholar
Edelaar, P., Roques, S., Hobson, E.A., et al. (2015). Shared genetic diversity across the global invasive range of the Monk Parakeet suggests a common restricted geographic origin and the possibility of convergent selection. Molecular Ecology, 24(9), 21642176.CrossRefGoogle ScholarPubMed
ENDCAP (2012). Wild pets in the European Union. Available at: http://endcap.eu/wp-content/uploads/2013/02/Report-Wild-Pets-in-the-European-Union.pdf, accessed 21 April 2016.Google Scholar
Freed, L.A. and Cann, R.L. (2009). Negative effects of an introduced bird species on growth and survival in a native bird community. Current Biology, 19, 17361740.CrossRefGoogle Scholar
Gilardi, J.D. (2006). Captured for conservation: will cages save wild birds? A response to Cooney and Jepson. Oryx, 40, 2426.CrossRefGoogle Scholar
Grundy, J. P., Franco, A. and Sullivan, M.J. (2014). Testing multiple pathways for impacts of the non‐native Black‐headed Weaver Ploceus melanocephalus on native birds in Iberia in the early phase of invasion. Ibis, 156, 355365.CrossRefGoogle Scholar
Guttinger, H.R. (1985). Consequences of domestication on the song structures in the canary. Behaviour, 92, 255278.Google Scholar
Haemig, P.D. (1978). Aztec Emperor Auitzotl and the great-tailed grackle. Biotropica, 10, 1117.CrossRefGoogle Scholar
Haemig, P.D. (2011). Introduction of the great-tailed grackle by Aztec Emperor Auitzotl: four-stage analysis with new information. Ardeola, 58, 387397.CrossRefGoogle Scholar
Hellmann, J.J., Byers, J.E., Bierwagen, B.G. and Dukes, J.S. (2008). Five potential consequences of climate change for invasive species. Conservation Biology, 22, 534543.CrossRefGoogle ScholarPubMed
Hernández-Brito, D., Carrete, M., Popa-Lisseanu, A., Ibáñez, C. and Tella, J.L. (2014). Crowding in the city: losing and winning competitors of an invasive bird. PLoS ONE, 9, e100593.CrossRefGoogle ScholarPubMed
Hernández-Brito, D., Luna, A., Carrete, M. and Tella, J.L. (2015). Alien rose-ringed parakeets (Psittacula krameri) often attack and even cause the death of black rats (Rattus rattus). Hystrix, 25, 121123.Google Scholar
Hulme, P.E. (2009). Trade, transport and trouble: managing invasive species pathways in an era of globalization. Journal of Applied Ecology, 46, 1018.CrossRefGoogle Scholar
Hulme, P.E., Bacher, S., Kenis, M., et al. (2008). Grasping at the routes of biological invasions: a framework for integrating pathways into policy. Journal of Applied Ecology, 45, 403414.CrossRefGoogle Scholar
Jepson, P. and Ladle, R. (2005). Bird-keeping in Indonesia. Conservation impacts and the potential for substitution-based conservation responses. Oryx, 39, 442449.CrossRefGoogle Scholar
Kark, S. and Sol, D. (2005). Establishment success across convergent Mediterranean ecosystems: an analysis of bird introductions. Conservation Biology, 19, 15191527.CrossRefGoogle Scholar
Keller, L.F. and Walter, D.M. (2002). Inbreeding effects in wild populations. Trends in Ecology and Evolution, 17, 236241.CrossRefGoogle Scholar
Kolar, C.S. and Lodge, D.M. (2001). Progress in invasion biology: predicting invaders. Trends in Ecology and Evolution, 16, 199204.CrossRefGoogle ScholarPubMed
Kumschick, S. and Nentwig, W. (2010). Some alien birds have as severe an impact as the most effectual alien mammals in Europe. Biological Conservation, 143, 27572762.CrossRefGoogle Scholar
Künzl, C., Kaiser, S., Meier, E. and Sachser, N. (2003). Is a wild mammal kept and reared in captivity still a wild animal? Hormones and Behavior, 43, 187196.CrossRefGoogle Scholar
Lau, M.W.N., Ades, G., Goodyer, N. and Zou, F. (1996). Wildlife trade in Southern China including Hong Kong and Macao. Biodiversity Working Group of the China Council for International Cooperation on Environment and Development Project, Hong Kong.Google Scholar
Lever, C. (2005). Naturalised Birds of the World. London: T and AD Poyser.Google Scholar
Lockwood, J.L., Cassey, P. and Blackburn, T. (2005). The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution, 20, 223228.CrossRefGoogle ScholarPubMed
MacGregor-Fors, I., Calderón-Parra, R., Meléndez-Herrada, A., López-López, S. and Schondube, J.E. (2011). Pretty, but dangerous! Records of non-native Monk Parakeets (Myiopsitta monachus) in Mexico. Revista Mexicana de Biodiversidad, 82, 10531056.CrossRefGoogle Scholar
Mack, M.C. (2003). Phylogenetic constraint, absent life forms, and preadapted alien plants: a prescription for biological invasions. International Journal of Plant Sciences, 164, S185S196.CrossRefGoogle Scholar
Mason, G.J. (2010). Species differences in responses to captivity: stress, welfare and the comparative method. Trends in Ecology and Evolution, 25, 713721.CrossRefGoogle ScholarPubMed
Mason, G.J., Burn, C.C., Dallaire, J.A., et al. (2013). Plastic animals in cages: behavioural flexibility and responses to captivity. Animal Behaviour, 85, 11131126.CrossRefGoogle Scholar
McDougall, P.T., Réale, D., Sol, D. and Reader, S.M. (2006). Wildlife conservation and animal temperament: causes and consequences of evolutionary change for captive, reintroduced and wild populations. Animal Conservation, 9, 3948.CrossRefGoogle Scholar
Mueller, J.C., Edelaar, P., Carrete, M., et al. (2014). Behaviour‐related DRD4 polymorphisms in invasive bird populations. Molecular Ecology, 23, 28762885.CrossRefGoogle ScholarPubMed
Muñoz-Fuentes, V., Green, A.J. and Negro, J.J. (2013). Genetic studies facilitated management decisions on the invasion of the ruddy duck in Europe. Biological Invasions, 15, 723728.CrossRefGoogle Scholar
Newson, S.E., Johnston, A., Parrott, D. and Leech, D.I. (2011). Evaluating the population‐level impact of an invasive species, ring‐necked parakeet Psittacula krameri, on native avifauna. Ibis, 153, 509516.CrossRefGoogle Scholar
Orchan, Y., Chiron, F., Shwartz, A. and Kark, S. (2013). The complex interaction network among multiple invasive bird species in a cavity-nesting community. Biological Invasions, 15, 429445.CrossRefGoogle Scholar
Peck, H.L., Pringle, H.E., Marshall, H.H., Owens, I.P.F. and Lord, A.M. (2014). Experimental evidence of impacts of an invasive parakeet on foraging behavior of native birds. Behavioral Ecology, 25, 582590.CrossRefGoogle ScholarPubMed
Pimentel, D., Zuniga, R. and Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52, 273288.CrossRefGoogle Scholar
Pires, S. (2012). The illegal parrot trade: a literature review. Global Crime, 13, 176190.CrossRefGoogle Scholar
Puigcerver, M., Sanchez-Donoso, I., Vilà, C., et al. (2014). Decreased fitness of restocked hybrid quails prevents fast admixture with wild European quails. Biological Conservation, 171, 7481.CrossRefGoogle Scholar
Puth, L.M. and Post, D.M. (2005). Studying invasion: have we missed the boat? Ecology Letters, 8, 715721.CrossRefGoogle Scholar
Rivalan, P., Delmas, V., Angulo, E., et al. (2007). Can bans stimulate wildlife trade? Nature, 447, 529530.CrossRefGoogle ScholarPubMed
Rodriguez-Cabal, M.A., Williamson, M. and Simberloff, D. (2013). Overestimation of establishment success of non-native birds in Hawaii and Britain. Biological Invasions, 15, 249252.CrossRefGoogle Scholar
Romagosa, C.M., Guyer, C. and Wooten, M.C. (2009). Contribution of the live-vertebrate trade toward taxonomic homogenization. Conservation Biology, 23, 10011007.CrossRefGoogle ScholarPubMed
Saavedra, S., Maraver, A., Anadón, J.D. and Tella, J.L. (2015). Multiple recent introduction events and the control and spread of mynas (Acridotheres sp.) in Spain and Portugal. Animal Biodiversity and Conservation, 38, 121127.CrossRefGoogle Scholar
Sánchez-Donoso, I. (2014). Impact of game restocking on common quail populations. PhD Dissertation. Barcelona, Spain: University of Barcelona.Google Scholar
Sánchez-Donoso, I., Vilà, C., Puigcerver, M., et al. (2012). Are farm-reared quails for game restocking really common quails (Coturnix coturnix)? A genetic approach. PloS ONE, 7, e39031.CrossRefGoogle ScholarPubMed
Sánchez-Donoso, I., Huisman, J., Echegaray, J., et al. (2014). Detecting slow introgression of invasive alleles in an extensively restocked game bird. Frontiers in Ecology and Evolution, 2, 15.CrossRefGoogle Scholar
Sánchez-Donoso, I., Morales-Rodriguez, P.A., Puigcerver, M., et al. (2016). Postcopulatory sexual selection favors fertilization success of restocking hybrid quails over native common quails (Coturnix coturnix). Journal of Ornithology, 157, 3342.CrossRefGoogle Scholar
Sanz-Aguilar, A., Anadón, J.D., Edelaar, P., Carrete, M., Tella, J.L. (2014). Can establishment success be determined through demographic parameters? A case study on five introduced bird species. PloS ONE, 9, e110019.CrossRefGoogle ScholarPubMed
Schwartz, M.D., Ahas, R. and Aasa, A. (2006). Onset of spring starting earlier across the northern hemisphere. Global Change Biology, 12, 343351.CrossRefGoogle Scholar
Seager, R. and Vecchi, G.A. (2010). Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proceedings of the National Academy of Sciences USA, 107, 2127721282.CrossRefGoogle ScholarPubMed
Shepherd, C.R. (2006). The bird trade in Medan, north Sumatra: an overview. Birding ASIA, 5, 1624.Google Scholar
Shepherd, C.R., Stengel, C.J. and Nijman, V. (2012). The export and re-export of CITES-listed birds from the Solomon Islands. TRAFFIC, Southeast Asia, Petaling Jaya, Selangor, Malaysia.Google Scholar
Shine, C., Kettunen, M., ten Brink, P., Genovesi, P. and Gollasch, S. (2009). Technical support to EU strategy on invasive species (IAS) – Recommendations on policy options to control the negative impacts of IAS on biodiversity in Europe and the EU. Final report for the European Commission. Institute for European Environmental Policy (IEEP), Brussels, Belgium. 35 pp. Available at http://ec.europa.eu/environment/nature/invasivealien/docs/Shine2009_IAS_Final%20report.pdf, accessed 21 April 2016.Google Scholar
Simberloff, D., Martin, J.-L., Genovesi, P., et al. (2013). Impacts of biological invasions: what's what and the way forward. Trends in Ecology and Evolution, 28, 5866.CrossRefGoogle ScholarPubMed
Sol, D., Duncan, R.P., Blackburn, T.M., et al. (2005). Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences, USA, 102, 54605465.CrossRefGoogle ScholarPubMed
Sol, D., Maspons, J., Vall-llosera, M., et al. (2012a). Unraveling the life history of successful invaders. Science, 337, 580583.CrossRefGoogle ScholarPubMed
Sol, D., Bartomeus, I. and Griffin, A.S. (2012b). The paradox of invasion in birds: competitive superiority or ecological opportunism? Oecologia, 169, 553564.CrossRefGoogle ScholarPubMed
Somerville, A.D., Nelson, B.A. and Knudson, K.J. (2010). Isotopic investigation of pre-Hispanic macaw breeding in Northwest Mexico. Journal of Anthropological Archaeology, 29, 125135.CrossRefGoogle Scholar
Strubbe, D. and Matthysen, E. (2009). Experimental evidence for nest-site competition between invasive ring-necked parakeets (Psittacula krameri) and native nuthatches (Sitta europaea). Biological Conservation, 142, 15881594.CrossRefGoogle Scholar
Strubbe, D., Matthysen, E. and Graham, C.H. (2010). Assessing the potential impact of invasive ring‐necked parakeets Psittacula krameri on native nuthatches Sitta europeae in Belgium. Journal of Applied Ecology, 47, 549557.CrossRefGoogle Scholar
Strubbe, D., Broennimann, O., Chiron, F. and Matthysen, E. (2013). Niche conservatism in non-native birds in Europe: niche unfilling rather than niche expansion. Global Ecology and Biogeography, 22, 962970.CrossRefGoogle Scholar
Stuber, E.F., Araya-Ajoy, Y.G., Mathot, K.J., et al. (2013). Slow explorers take less risk: a problem of sampling bias in ecological studies. Behavioral Ecology, 24, 10921098.CrossRefGoogle Scholar
Su, S., Cassey, P. and Blackburn, T.M. (2014). Patterns of non-randomness in the composition and characteristics of the Taiwanese bird trade. Biological Invasions, 16, 25632575.CrossRefGoogle Scholar
Su, S., Cassey, P., Vall-llosera, M. and Blackburn, T.M. (2015). Going cheap: determinants of bird price in the Taiwanese pet market. PloS ONE, 10, e0127482.CrossRefGoogle Scholar
Tella, J.L. (2011). The unknown extent of ancient bird introductions. Ardeola, 58, 399404.CrossRefGoogle Scholar
Tella, J.L. and Hiraldo, F. (2014). Illegal and legal parrot trade shows a long-term, cross-cultural preference for the most attractive species increasing their risk of extinction. PloS ONE, 9, e107546.CrossRefGoogle Scholar
Theoharides, K.A. and Dukes, J.S. (2007). Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytologist, 176, 256273.CrossRefGoogle ScholarPubMed
Thomsen, J.B., Edwards, S.R. and Muliken, T.A. (1992). Perceptions, Conservation and Management of Wild Birds in Trade. Cambridge: TRAFFIC International, WWF and IUCN.Google Scholar
Toland, E., Warwick, C. and Arena, P. (2012). The exotic pet trade: pet hate. The Biologist, 59, 1418.Google Scholar
van Kleunen, M., Dawson, W., Schlaepfer, D., Jeschke, J.M. and Fischer, M. (2010). Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecology Letters, 13, 947958.CrossRefGoogle ScholarPubMed
Warwick, C., Arena, P.C., Steedman, C. and Jessop, M. (2012). A review of captive exotic animal-linked zoonoses. Journal of Environmental Health Research, 12, 924.Google Scholar
Westphal, M.I., Browne, M., MacKinnon, K. and Noble, I. (2008). The link between international trade and the global distribution of invasive alien species. Biological Invasions, 10, 391398.CrossRefGoogle Scholar
Williams, F., Eschen, R., Harris, A., et al. (2010). The Economic Cost of Invasive Non-Native Species on Great Britain. Wallingford, UK: CABI.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×