Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T10:50:55.788Z Has data issue: false hasContentIssue false

Section VIII - Neonatal Oncology

Published online by Cambridge University Press:  30 January 2021

Pedro A. de Alarcón
Affiliation:
University of Illinois College of Medicine
Eric J. Werner
Affiliation:
Children's Hospital of the King's Daughters
Robert D. Christensen
Affiliation:
University of Utah
Martha C. Sola-Visner
Affiliation:
Harvard University, Massachusetts
Get access

Summary

Leukemia in the neonatal period is very rare and can present as early as the day of birth [1, 2]. Acute leukemia arises from clonal changes in hematopoietic precursor cells. In neonatal leukemia, defined as leukemia presenting in the first month after birth, these clonal abnormalities initiate during fetal development [3]. A backtracking molecular study of infants and young children who developed leukemia beyond the neonatal period demonstrated that the same clonal mutations found in the leukemia were also present in neonatal blood spots [4]. Though some epidemiologic studies have suggested that maternal intake of certain foods may contribute, the genetic and environmental risk factors for infant leukemia are not well understood [5–7]. One exception is the observation that an identical twin of an infant with acute lymphoblastic leukemia has a nearly 100% chance of developing the same type of leukemia [8, 9]. In contrast, the genetic risk factors associated with myeloproliferative neoplasms among neonates are better defined [10]. Neonates with Down syndrome are at risk of transient myeloproliferative disorder (TMD) [11) and neonates with Noonan syndrome or related Ras pathway disorders may present with juvenile myelomonocytic leukemia (JMML) [10]. Both TMD and JMML have the potential to be serious and life-threatening. Recognition of the presenting features of neonatal leukemia is important, as early initiation of therapy may prevent rapid progression of disease.

Type
Chapter
Information
Neonatal Hematology
Pathogenesis, Diagnosis, and Management of Hematologic Problems
, pp. 367 - 400
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

van der Linden, MH, Creemers, S, Pieters, R. Diagnosis and management of neonatal leukaemia. Semin Fetal Neonatal Med 2012;17(4):192–5.CrossRefGoogle ScholarPubMed
Roberts, I, Fordham, NJ, Rao, A, Bain, BJ. Neonatal leukaemia. Br J Haematol 2018;182(2):170–84.Google Scholar
Ford, AM, Ridge, SA, Cabrera, ME, et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 1993;363(6427):358–60.CrossRefGoogle ScholarPubMed
Gale, KB, Ford, AM, Repp, R, et al. Backtracking leukemia to birth: Identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci USA 1997;94(25):13950–4.Google Scholar
Valentine, MC, Linabery, AM, Chasnoff, S, et al. Excess congenital non-synonymous variation in leukemia-associated genes in MLL-infant leukemia: A Children’s Oncology Group report. Leukemia 2014;28(6):1235–41.Google Scholar
Bueno, C, Montes, R, Catalina, P, Rodriguez, R, Menendez, P. Insights into the cellular origin and etiology of the infant pro-B acute lymphoblastic leukemia with MLL-AF4 rearrangement. Leukemia 2011;25(3):400 –10.Google Scholar
Spector, LG, Xie, Y, Robison, LL, et al. Maternal diet and infant leukemia: The DNA topoisomerase II inhibitor hypothesis: A report from the children’s oncology group. Cancer Epidemiol Biomarkers Prev 2005;14(3):651–5.Google Scholar
Greaves, MF, Maia, AT, Wiemels, JL, Ford, AM. Leukemia in twins: Lessons in natural history. Blood 2003;102(7):2321–33.CrossRefGoogle ScholarPubMed
Chuk, MK, McIntyre, E, Small, D, Brown, P. Discordance of MLL-rearranged (MLL-R) infant acute lymphoblastic leukemia in monozygotic twins with spontaneous clearance of preleukemic clone in unaffected twin. Blood 2009;113(26):6691–4.Google Scholar
Hasle, H. Myelodysplastic and myeloproliferative disorders of childhood. Hematology Am Soc Hematol Educ Program 2016;2016(1):598604.CrossRefGoogle ScholarPubMed
Tunstall, O, Bhatnagar, N, James, B, et al. Guidelines for the investigation and management of transient leukaemia of Down Syndrome. Br J Haematol 2018;182(2):200–11.Google Scholar
Noone, AM, Howlader, N, Krapcho, M, et al. SEER Cancer Statistics Review, 1975–2015, based on November 2017 SEER data submission (Bethesda, MD: National Cancer Institute, 2018). Available online at https://seer.cancer.gov/csr/1975_2015.Google Scholar
Guest, EM, Stam, RW. Updates in the biology and therapy for infant acute lymphoblastic leukemia. Curr Opin Pediatr 2017;29(1):20–6.Google Scholar
Hilden, JM, Dinndorf, PA, Meerbaum, SO, et al. Analysis of prognostic factors of acute lymphoblastic leukemia in infants: Report on CCG 1953 from the Children’s Oncology Group. Blood 2006;108(2):441–51.Google Scholar
Dordelmann, M, Reiter, A, Borkhardt, A, et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood 1999;94(4):1209–17.CrossRefGoogle ScholarPubMed
Pui, CH, Ribeiro, RC, Campana, D, et al. Prognostic factors in the acute lymphoid and myeloid leukemias of infants. Leukemia 1996;10(6):952–6.Google ScholarPubMed
van der Linden, MH, Valsecchi, MG, De Lorenzo, P, et al. Outcome of congenital acute lymphoblastic leukemia treated on the Interfant-99 protocol. Blood 2009;114(18):3764–8.Google Scholar
Nguyen, R, Jeha, S, Zhou, Y, et al. The role of leukapheresis in the current management of hyperleukocytosis in newly diagnosed childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2016;63(9):1546–51.CrossRefGoogle ScholarPubMed
Runco, DV, Josephson, CD, Raikar, SS, et al. Hyperleukocytosis in infant acute leukemia: A role for manual exchange transfusion for leukoreduction. Transfusion 2018;58(5):1149–56.CrossRefGoogle ScholarPubMed
Pieters, R, Schrappe, M, De Lorenzo, P, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): An observational study and a multicentre randomised trial. Lancet 2007;370(9583):240–50.CrossRefGoogle Scholar
Salzer, WL, Jones, TL, Devidas, M, et al. Decreased induction morbidity and mortality following modification to induction therapy in infants with acute lymphoblastic leukemia enrolled on AALL0631: A report from the Children’s Oncology Group. Pediatr Blood Cancer 2015;62(3):414–18.Google Scholar
Salzer, WL, Jones, TL, Devidas, M, et al. Modifications to induction therapy decrease risk of early death in infants with acute lymphoblastic leukemia treated on Children’s Oncology Group P9407. Pediatr Blood Cancer 2012;59(5):834–9.Google Scholar
Tomizawa, D, Tawa, A, Watanabe, T, et al. Appropriate dose reduction in induction therapy is essential for the treatment of infants with acute myeloid leukemia: A report from the Japanese Pediatric Leukemia/Lymphoma Study Group. Int J Hematol 2013;98(5):578–88.Google Scholar
Tomizawa, D. Recent progress in the treatment of infant acute lymphoblastic leukemia. Pediatr Int 2015;57(5):811–19.CrossRefGoogle ScholarPubMed
Kotecha, RS, Gottardo, NG, Kees, UR, Cole, CH. The evolution of clinical trials for infant acute lymphoblastic leukemia. Blood Cancer J 2014;4:e200.CrossRefGoogle ScholarPubMed
Driessen, EM, de Lorenzo, P, Campbell, M, et al. Outcome of relapsed infant acute lymphoblastic leukemia treated on the interfant-99 protocol. Leukemia 2016;30(5):1184–7.CrossRefGoogle ScholarPubMed
Biondi, A, Rizzari, C, Valsecchi, MG, et al. Role of treatment intensification in infants with acute lymphoblastic leukemia: Results of two consecutive AIEOP studies. Haematologica 2006;91(4):534–7.Google ScholarPubMed
Dreyer, ZE, Dinndorf, PA, Camitta, B, et al. Analysis of the role of hematopoietic stem-cell transplantation in infants with acute lymphoblastic leukemia in first remission and MLL gene rearrangements: A report from the Children’s Oncology Group. J Clin Oncol 2011;29(2):214–22.Google Scholar
Koh, K, Tomizawa, D, Moriya Saito, A, et al. Early use of allogeneic hematopoietic stem cell transplantation for infants with MLL gene-rearrangement-positive acute lymphoblastic leukemia. Leukemia 2015;29(2):290–6.Google Scholar
Mann, G, Attarbaschi, A, Schrappe, M, et al. Improved outcome with hematopoietic stem cell transplantation in a poor prognostic subgroup of infants with mixed-lineage-leukemia (MLL)-rearranged acute lymphoblastic leukemia: Results from the Interfant-99 Study. Blood 2010;116(15):2644–50.Google Scholar
Sanjuan-Pla, A, Bueno, C, Prieto, C, et al. Revisiting the biology of infant t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia. Blood 2015;126(25):2676–85.Google Scholar
Meyer, C, Burmeister, T, Groger, D, et al. The MLL recombinome of acute leukemias in 2017. Leukemia 2018;32(2):273–84.CrossRefGoogle ScholarPubMed
Brown, P, Levis, M, Shurtleff, S, et al. FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood 2005;105(2):812–20.CrossRefGoogle ScholarPubMed
Dreyer, ZE, Hilden, JM, Jones, TL, et al. Intensified chemotherapy without SCT in infant ALL: Results from COG P9407 (Cohort 3). Pediatr Blood Cancer 2015;62(3):419–26.Google Scholar
Tomizawa, D, Koh, K, Sato, T, et al. Outcome of risk-based therapy for infant acute lymphoblastic leukemia with or without an MLL gene rearrangement, with emphasis on late effects: A final report of two consecutive studies, MLL96 and MLL98, of the Japan Infant Leukemia Study Group. Leukemia 2007;21(11):2258–63.Google Scholar
Nagayama, J, Tomizawa, D, Koh, K, et al. Infants with acute lymphoblastic leukemia and a germline MLL gene are highly curable with use of chemotherapy alone: Results from the Japan Infant Leukemia Study Group. Blood 2006;107(12):4663–5.Google Scholar
De Lorenzo, P, Moorman, AV, Pieters, R, et al. Cytogenetics and outcome of infants with acute lymphoblastic leukemia and absence of MLL rearrangements. Leukemia 2014;28(2):428–30.CrossRefGoogle ScholarPubMed
Tomizawa, D, Koh, K, Hirayama, M, et al. Outcome of recurrent or refractory acute lymphoblastic leukemia in infants with MLL gene rearrangements: A report from the Japan Infant Leukemia Study Group. Pediatr Blood Cancer 2009;52(7):808–13.Google Scholar
Van der Velden, VH, Corral, L, Valsecchi, MG, et al. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia 2009;23(6):1073–9.CrossRefGoogle ScholarPubMed
Leung, W, Hudson, M, Zhu, Y, et al. Late effects in survivors of infant leukemia. Leukemia 2000;14(7):1185–90.CrossRefGoogle ScholarPubMed
Kaleita, TA, Reaman, GH, MacLean, WE, Sather, HN, Whitt, JK. Neurodevelopmental outcome of infants with acute lymphoblastic leukemia: A Children’s Cancer Group report. Cancer 1999;85(8):1859–65.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Bresters, D, Reus, AC, Veerman, AJ, van Wering, ER, van der Does-van den Berg A, Kaspers GJ. Congenital leukaemia: The Dutch experience and review of the literature. Br J Haematol 2002;117(3):513–24.Google Scholar
Isaacs, H, Jr. Fetal and neonatal leukemia. J Pediatr Hematol Oncol 2003;25(5):348–61.CrossRefGoogle ScholarPubMed
Balgobind, BV, Raimondi, SC, Harbott, J, et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: Results of an international retrospective study. Blood 2009;114(12):2489–96.CrossRefGoogle ScholarPubMed
Emerenciano, M, Meyer, C, Mansur, MB, Marschalek, R, Pombo-de-Oliveira, MS. The distribution of MLL breakpoints correlates with outcome in infant acute leukaemia. Br J Haematol 2013;161(2):224–36.Google Scholar
Dastugue, N, Lafage-Pochitaloff, M, Pages, MP, et al. Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): A study of the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood 2002;100(2):618–26.Google Scholar
Bayoumy, M, Wynn, T, Jamil, A, et al. Prenatal presentation supports the in utero development of congenital leukemia: A case report. J Pediatr Hematol Oncol 2003;25(2):148–52.Google Scholar
Resnik, KS, Brod, BB. Leukemia cutis in congenital leukemia. Analysis and review of the world literature with report of an additional case. Arch Dermatol 1993;129(10):1301–6.CrossRefGoogle ScholarPubMed
Ishii, E, Oda, M, Kinugawa, N, et al. Features and outcome of neonatal leukemia in Japan: Experience of the Japan infant leukemia study group. Pediatr Blood Cancer 2006;47(3):268–72.Google Scholar
Barrett, R, Morash, B, Roback, D, et al. FISH identifies a KAT6A/CREBBP fusion caused by a cryptic insertional t(8;16) in a case of spontaneously remitting congenital acute myeloid leukemia with a normal karyotype. Pediatr Blood Cancer 2017;64(8):26450.Google Scholar
Coenen, EA, Zwaan, CM, Reinhardt, D, et al. Pediatric acute myeloid leukemia with t(8;16)(p11;p13), a distinct clinical and biological entity: A collaborative study by the International-Berlin-Frankfurt-Munster AML-study group. Blood 2013;122(15):2704–13.CrossRefGoogle Scholar
Creutzig, U, van den Heuvel-Eibrink, MM, Gibson, B, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: Recommendations from an international expert panel. Blood 2012;120(16):3187–205.Google Scholar
Creutzig, U, Zimmermann, M, Bourquin, JP, et al. Favorable outcome in infants with AML after intensive first- and second-line treatment: An AML-BFM study group report. Leukemia 2012;26(4):654–61.Google Scholar
Gamis, AS, Alonzo, TA, Meshinchi, S, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: Results from the randomized phase III Children’s Oncology Group trial AAML0531. J Clin Oncol 2014;32(27):3021–32.Google Scholar
Guest, EM, Aplenc, R, Sung, L, et al. Gemtuzumab ozogamicin in infants with AML: Results from the Children’s Oncology Group trials AAML03P1 and AAML0531. Blood 2017;130(7):943–5.CrossRefGoogle ScholarPubMed
Chang, TY, Dvorak, CC, Loh, ML. Bedside to bench in juvenile myelomonocytic leukemia: Insights into leukemogenesis from a rare pediatric leukemia. Blood 2014;124(16):2487–97.Google Scholar
Arber, DA, Orazi, A, Hasserjian, R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127(20):2391–405.Google Scholar
Locatelli, F, Niemeyer, CM. How I treat juvenile myelomonocytic leukemia. Blood 2015;125(7):1083–90.CrossRefGoogle Scholar
Lee, ML, Yen, HJ, Chen, SJ, et al. Juvenile myelomonocytic leukemia in a premature neonate mimicking neonatal sepsis. Pediatr Neonatol 2016;57(2):149–52.Google Scholar
Niemeyer, CM, Kang, MW, Shin, DH, et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet 2010;42(9):794800.Google Scholar
Perez, B, Mechinaud, F, Galambrun, C, et al. Germline mutations of the CBL gene define a new genetic syndrome with predisposition to juvenile myelomonocytic leukaemia. J Med Genet 2010;47(10):686–91.CrossRefGoogle ScholarPubMed
Matsuda, K, Shimada, A, Yoshida, N, et al. Spontaneous improvement of hematologic abnormalities in patients having juvenile myelomonocytic leukemia with specific RAS mutations. Blood 2007;109(12):5477–80.CrossRefGoogle ScholarPubMed
Matsuda, K, Taira, C, Sakashita, K, et al. Long-term survival after nonintensive chemotherapy in some juvenile myelomonocytic leukemia patients with CBL mutations, and the possible presence of healthy persons with the mutations. Blood 2010;115(26):5429–31.Google Scholar
Locatelli, F, Nollke, P, Zecca, M, et al. Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): Results of the EWOG-MDS/EBMT trial. Blood 2005;105(1):410–19.Google Scholar
Mason-Suares, H, Toledo, D, Gekas, J, et al. Juvenile myelomonocytic leukemia-associated variants are associated with neo-natal lethal Noonan syndrome. Eur J Hum Genet 2017;25(4):509–11.Google Scholar
Strullu, M, Caye, A, Lachenaud, J, et al. Juvenile myelomonocytic leukaemia and Noonan syndrome. J Med Genet 2014;51(10):689–97.Google Scholar
Flotho, C, Kratz, CP, Bergstrasser, E, et al. Genotype-phenotype correlation in cases of juvenile myelomonocytic leukemia with clonal RAS mutations. Blood 2008;111(2):966–7; author reply 7–8.Google Scholar
Zipursky, A. Transient leukaemia–a benign form of leukaemia in newborn infants with trisomy 21. Br J Haematol 2003;120(6):930–8.CrossRefGoogle ScholarPubMed
Ahmed, M, Sternberg, A, Hall, G, et al. Natural history of GATA1 mutations in Down syndrome. Blood 2004;103(7):2480–9.Google Scholar
Pine, SR, Guo, Q, Yin, C, et al. Incidence and clinical implications of GATA1 mutations in newborns with Down syndrome. Blood 2007;110(6):2128–31.Google Scholar
Roberts, I, Alford, K, Hall, G, et al. GATA1-mutant clones are frequent and often unsuspected in babies with Down syndrome: identification of a population at risk of leukemia. Blood 2013;122(24):3908–17.Google Scholar
Klusmann, JH, Creutzig, U, Zimmermann, M, et al. Treatment and prognostic impact of transient leukemia in neonates with Down syndrome. Blood 2008;111(6):2991–8.Google Scholar
Buitenkamp, TD, Izraeli, S, Zimmermann, M, et al. Acute lymphoblastic leukemia in children with Down syndrome: A retrospective analysis from the Ponte di Legno study group. Blood 2014;123(1):70–7.CrossRefGoogle ScholarPubMed
Gamis, AS, Alonzo, TA, Gerbing, RB, et al. Natural history of transient myeloproliferative disorder clinically diagnosed in Down syndrome neonates: A report from the Children’s Oncology Group Study A2971. Blood 2011;118(26):6752–9; quiz 996.Google Scholar
Hitzler, JK, Cheung, J, Li, Y, Scherer, SW, Zipursky, A. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood 2003;101(11):4301–4.Google Scholar
Yoshida, K, Toki, T, Okuno, Y, et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet 2013;45(11):1293–9.Google Scholar
Alford, KA, Reinhardt, K, Garnett, C, et al. Analysis of GATA1 mutations in Down syndrome transient myeloproliferative disorder and myeloid leukemia. Blood 2011;118(8):2222–38.Google Scholar
Malinge, S, Chlon, T, Dore, LC, et al. Development of acute megakaryoblastic leukemia in Down syndrome is associated with sequential epigenetic changes. Blood 2013;122(14):e3343.Google Scholar
Wechsler, J, Greene, M, McDevitt, MA, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 2002;32(1):148–52.CrossRefGoogle ScholarPubMed
Massey, GV, Zipursky, A, Chang, MN, et al. A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children’s Oncology Group (COG) study POG-9481. Blood 2006;107(12):4606–13.Google Scholar
Winckworth, LC, Chonat, S, Uthaya, S. Cutaneous lesions in transient abnormal myelopoiesis. J Paediatr Child Health 2012;48(2):184–5.Google Scholar
Gamis, AS, Smith, FO. Transient myeloproliferative disorder in children with Down syndrome: clarity to this enigmatic disorder. Br J Haematol 2012;159(3):277–87.Google Scholar
Smrcek, JM, Baschat, AA, Germer, U, Gloeckner-Hofmann, K, Gembruch, U. Fetal hydrops and hepatosplenomegaly in the second half of pregnancy: A sign of myeloproliferative disorder in fetuses with trisomy 21. Ultrasound Obstet Gynecol 2001;17(5):403–9.Google Scholar
Yagihashi, N, Watanabe, K, Yagihashi, S. Transient abnormal myelopoiesis accompanied by hepatic fibrosis in two infants with Down syndrome. J Clin Pathol 1995;48(10):973–5.Google Scholar
Heald, B, Hilden, JM, Zbuk, K, et al. Severe TMD/AMKL with GATA1 mutation in a stillborn fetus with Down syndrome. Nat Clin Pract Oncol 2007;4(7):433–8.CrossRefGoogle Scholar
Maroz, A, Stachorski, L, Emmrich, S, et al. GATA1s induces hyperproliferation of eosinophil precursors in Down syndrome transient leukemia. Leukemia. 2014;28(6):1259–70.Google Scholar
Swerdlow, SN, Campo, E, Pileri, SA, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, revised 4th ed. (Lyon: IARC, 2017).Google Scholar
Miyauchi, J, Ito, Y, Kawano, T, Tsunematsu, Y, Shimizu, K. Unusual diffuse liver fibrosis accompanying transient myeloproliferative disorder in Down’s syndrome: A report of four autopsy cases and proposal of a hypothesis. Blood 1992;80(6):1521–7.Google Scholar
Muramatsu, H, Kato, K, Watanabe, N, et al. Risk factors for early death in neonates with Down syndrome and transient leukaemia. Br J Haematol 2008;142(4):610–15.Google Scholar
Tamblyn, JA, Norton, A, Spurgeon, L, et al. Prenatal therapy in transient abnormal myelopoiesis: A systematic review. Arch Dis Child Fetal Neonatal Ed 2016;101(1):F6771.Google Scholar
Taub, JW, Huang, X, Matherly, LH, et al. Expression of chromosome 21-localized genes in acute myeloid leukemia: Differences between Down syndrome and non-Down syndrome blast cells and relationship to in vitro sensitivity to cytosine arabinoside and daunorubicin. Blood 1999;94(4):1393–400.Google Scholar
Zwaan, CM, Kaspers, GJ, Pieters, R, et al. Different drug sensitivity profiles of acute myeloid and lymphoblastic leukemia and normal peripheral blood mononuclear cells in children with and without Down syndrome. Blood 2002;99(1):245–51.Google Scholar
Flasinski, M, Scheibke, K, Zimmermann, M, et al. Low-dose cytarabine to prevent myeloid leukemia in children with Down syndrome: TMD Prevention 2007 study. Blood Adv 2018;2(13):1532–40.Google Scholar
Park, MJ, Sotomatsu, M, Ohki, K, et al. Liver disease is frequently observed in Down syndrome patients with transient abnormal myelopoiesis. Int J Hematol 2014;99(2):154–61.CrossRefGoogle ScholarPubMed
Hasle, H, Abrahamsson, J, Arola, M, et al. Myeloid leukemia in children 4 years or older with Down syndrome often lacks GATA1 mutation and cytogenetics and risk of relapse are more akin to sporadic AML. Leukemia 2008;22(7):1428–30.Google Scholar
Uffmann, M, Rasche, M, Zimmermann, M, et al. Therapy reduction in patients with Down syndrome and myeloid leukemia: The international ML-DS 2006 trial. Blood 2017;129(25):3314–21.Google Scholar

References

Rao, S, Azmy, A, Carachi, R. Neonatal tumours: A single-centre experience. Pediatr Surg Int 2002;18(5–6):306–9.Google Scholar
Gurney, J, Smith, M, Ross, J. Cancer among infants. InRies, L, Smith, MA, Gurney, JG, et al. eds. Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995, Vol. NIH Pub. No. 994649. (Bethesda, MD: National Cancer Institute, SEER Program, 1999).Google Scholar
Desandes, E, Guissou, S, Ducassou, S, Lacour, B. Neonatal solid tumors: Incidence and survival in France. Pediatr Blood Cancer 2016;63(8):1375–80.Google Scholar
Alfaar, AS, Hassan, WM, Bakry, MS, Qaddoumi, I. Neonates with cancer and causes of death; lessons from 615 cases in the SEER databases. Cancer Med 2017;6(7):1817–26.Google Scholar
Parkes, SE, Muir, KR, Southern, L, et al. Neonatal tumours: A thirty-year population-based study. Med Pediatr Oncol 1994;22(5):309–17.Google Scholar
Ries, L, Percy, C, Bunin, G. Introduction. InRies, L, Smith, MA, Gurney, JG, et al. eds. Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995, Vol. NIH Pub. No. 994649. (Bethesda, MD: National Cancer Institute, SEER Program,1999).Google Scholar
Smith, MA, Seibel, NL, Altekruse, SF, et al. Outcomes for children and adolescents with cancer: Challenges for the twenty-first century. J Clin Oncol 2010;28(15):2625–34.Google Scholar
Zhang, J, Walsh, MF, Wu, G, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med 2015;373(24):2336–46.CrossRefGoogle ScholarPubMed
Jongmans, MC, Loeffen, JL, Waanders, E, et al. Recognition of genetic predisposition in pediatric cancer patients: an easy-to-use selection tool. Eur J Med Genet 2016;59(3):116–25.Google Scholar
Chandrasekaran, A. Neonatal solid tumors. Pediatr Neonatol, 2018;59(1):6570.Google Scholar
Bader, JL, Miller, RW. US cancer incidence and mortality in the first year of life. Am J Dis Child 1979;133(2):157–9.Google Scholar
Parkes, S, Muir, KR, Southern, L, et al. Neonatal tumours: A thirty‐year population‐based study. Med Pediatr Oncol 1994;22(5):309–17.Google Scholar
Yamamoto, K, Ohta, S, Ito, E, et al. Marginal decrease in mortality and marked increase in incidence as a result of neuroblastoma screening at 6 months of age: Cohort study in seven prefectures in Japan. J Clin Oncol 2002;20(5):1209–14.Google Scholar
Barrette, S, Bernstein, ML, Robison, LL, et al. Incidence of neuroblastoma after a screening program. J Clin Oncol 2007;25(31):4929–32.Google Scholar
Puyo, A, Levin, G, Armando, I, Barontini, M. Total plasma dopamine/norepinephrine ratio in catecholamine-secreting tumors. Its relation to hypertension. Hypertension 1988;11(2 Pt 2):I202–6.Google Scholar
Maris, JM, Hogarty, MD, Bagatell, R, Cohn, SL. Neuroblastoma. Lancet 2007;369(9579):2106–20.Google Scholar
Monclair, T, Brodeur, GM, Ambros, PF, et al. The International Neuroblastoma Risk Group (INRG) Staging System: An INRG Task Force Report. J Clin Oncol 2009;27(2):298303.Google Scholar
Cohn, SL, Pearson, AD, London, WB, et al. The International Neuroblastoma Risk Group (INRG) Classification System: An INRG Task Force Report. J Clin Oncol 2009;27(2):289–97.Google Scholar
Ora, I, Eggert, A. Progress in treatment and risk stratification of neuroblastoma: impact on future clinical and basic research. Semin Cancer Biol 2011;21(4):217–28.Google Scholar
Canete, A, Gerrard, M, Rubie, H, et al. Poor survival for infants with MYCN-amplified metastatic neuroblastoma despite intensified treatment: The International Society of Paediatric Oncology European Neuroblastoma Experience. J Clin Oncol 2009;27(7):1014–19.CrossRefGoogle Scholar
Hero, B, Simon, T, Spitz, R, et al. Localized infant neuroblastomas often show spontaneous regression: Results of the prospective trials NB95-S and NB97. J Clin Oncol, 2008;26(9):1504–10.Google Scholar
Nuchtern, JG, London, WB, Barnewolt, CE, et al. A prospective study of expectant observation as primary therapy for neuroblastoma in young infants: A Children’s Oncology Group Study. Ann Surg 2012;256(4):573–80.Google Scholar
Nickerson, HJ, Matthay, KK, Seeger, RC, et al. Favorable biology and outcome of stage IV-S neuroblastoma with supportive care or minimal therapy: A Children’s Cancer Group study. J Clin Oncol, 2000;18(3):477–86.Google Scholar
Rescorla, FJ, Sawin, RS, Coran, AG, Dillon, PW, Azizkhan, RG. Long-term outcome for infants and children with sacrococcygeal teratoma: A report from the Childrens Cancer Group. J Pediatr Surg 1998;33(2):171–6.Google Scholar
Fernandez, K, Solid tumors in the neonatal period. NeoReviews 2014;15(2):e56-e68.Google Scholar
Moppett, J, Haddadin, I, Foot, AB. Neonatal neuroblastoma. Arch Dis Child Fetal Neonatal Ed 1999;81(2):F134–7.Google Scholar
Isaacs, H, Jr. Fetal and neonatal neuroblastoma: Retrospective review of 271 cases. Fetal Pediatr Pathol 2007;26(4):177–84.Google Scholar
De Bernardi, B, Gerrard, M, Boni, L, et al. Excellent outcome with reduced treatment for infants with disseminated neuroblastoma without MYCN gene amplification. J Clin Oncol 2009;27(7):1034–40.Google Scholar
Nadler, EP, Barksdale, EM. Adrenal masses in the newborn. Semin Pediatr Surg 2000;9(3):156–64.Google Scholar
Curtis, MR, Mooney, DP, Vaccaro, TJ, et al. Prenatal ultrasound characterization of the suprarenal mass: Distinction between neuroblastoma and subdiaphragmatic extralobar pulmonary sequestration. J Ultrasound Med 1997;16(2):7583.Google Scholar
Isaacs, H, Jr. Congenital and neonatal malignant tumors. A 28-year experience at Children’s Hospital of Los Angeles. Am J Pediatr Hematol Oncol 1987;9(2):121–9.Google Scholar
Isaacs, H, Jr. Perinatal (fetal and neonatal) germ cell tumors. J Pediatr Surg 2004;39(7):1003–13.Google Scholar
Gopal, M, Turnpenny, PD, Spicer, R. Hereditary sacrococcygeal teratoma–not the same as its sporadic counterpart! Eur J Pediatr Surg 2007;17(3):214–6.Google Scholar
Dharmarajan, H, Rouillard-Bazinet, N, Chandy, BM. Mature and immature pediatric head and neck teratomas: A 15-year review at a large tertiary center. Int J Pediatr Otorhinolaryngol 2018;105:43–7.Google Scholar
Frazier, AL, Weldon, C, Amatruda, J. Fetal and neonatal germ cell tumors. Semin Fetal Neonatal Med 2012;17(4):222–30.Google Scholar
Wu, JT, Book, L, Sudar, K. Serum alpha fetoprotein (AFP) levels in normal infants. Pediatr Res, 1981;15:50–2.Google Scholar
Blohm, ME, Gobel, U. Unexplained anaemia and failure to thrive as initial symptoms of infantile choriocarcinoma: A review. Eur J Pediatr 2004;163(1):16.Google Scholar
Ferrari, A, Sultan, I, Huang, TT, et al. Soft tissue sarcoma across the age spectrum: A population-based study from the Surveillance Epidemiology and End Results database. Pediatr Blood Cancer 2011;57(6):943–9.Google Scholar
Sultan, I, Casanova, M, Al-Jumaily, U, et al. Soft tissue sarcomas in the first year of life. Eur J Cancer 2010;46(13):2449–56.Google Scholar
Ferrari, A, Orbach, D, Sultan, I, Casanova, M, Bisogno, G. Neonatal soft tissue sarcomas. Semin Fetal Neonatal Med 2012;17(4):231–8.Google Scholar
Güra, A, Tezcan, G, Karagüzel, G, Cevikol, C, Oygür, N. An unusual localization of embryonal rhabdomyosarcoma in a neonate. Turk J Pediatr 2007;49(1):82–4.Google Scholar
Rodriguez-Galindo, C, Hill, DA, Onyekwere, O, et al. Neonatal alveolar rhabdomyosarcoma with skin and brain metastases. Cancer 2001;92(6):1613–20.Google Scholar
De Giovanni, C, Landuzzi, L, Nicoletti, G, Lollini, PL, Nanni, P. Molecular and cellular biology of rhabdomyosarcoma. Future Oncol 2009;5(9):1449–75.Google Scholar
Lobe, TE, Wiener, ES, Hays, DM, et al. Neonatal rhabdomyosarcoma: The IRS experience. J Pediatr Surg 1994;29(8):1167–70.Google Scholar
Lackner, H, Urban, C, Kerbl, R, Schwinger, W, Beham, A. Noncytotoxic drug therapy in children with unresectable desmoid tumors. Cancer 1997;80(2):334–40.Google Scholar
Domont, J, Salas, S, Lacroix, L, et al. High frequency of beta-catenin heterozygous mutations in extra-abdominal fibromatosis: A potential molecular tool for disease management. Br J Cancer 2010;102(6):1032–6.Google Scholar
Ferrari, A, Casanova, M, Bisogno, G, et al. Hemangiopericytoma in pediatric ages: A report from the Italian and German Soft Tissue Sarcoma Cooperative Group. Cancer 2001;92(10):2692–8.Google Scholar
Staples, JJ, Robinson, RA, Wen, BC, Hussey, DH. Hemangiopericytoma: The role of radiotherapy. Int J Radiat Oncol Biol Phys 1990;19(2):445–51.Google Scholar
Rodriguez-Galindo, C, Ramsey, K, Jenkins, JJ, et al. Hemangiopericytoma in children and infants. Cancer 2000;88(1):198204.Google Scholar
Cecchetto, G, Carli, M, Alaggio, R, et al. Fibrosarcoma in pediatric patients: Results of the Italian Cooperative Group studies (1979–1995). J Surg Oncol 2001;78(4):225–31.Google Scholar
Orbach, D, Rey, A, Oberlin, O, et al. Soft tissue sarcoma or malignant mesenchymal tumors in the first year of life: experience of the International Society of Pediatric Oncology (SIOP) Malignant Mesenchymal Tumor Committee. J Clin Oncol 2005;23(19):4363–71.CrossRefGoogle ScholarPubMed
Coffin, CM, Jaszcz, W, O‘Shea, PA, Dehner, LP. So-called congenital-infantile fibrosarcoma: does it exist and what is it? Pediatr Pathol 1994;14(1):133–50.Google Scholar
Bourgeois, JM, Knezevich, SR, Mathers, JA, Sorensen, PH. Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am J Surg Pathol 2000;24(7):937–46.Google Scholar
Orbach, D, Rey, A, Cecchetto, G, et al. Infantile fibrosarcoma: management based on the European experience. J Clin Oncol 2010;28(2):318–23.Google Scholar
Hwang, ES, Gerald, W, Wollner, N, Meyers, P, La Quaglia, MP. Leiomyosarcoma in childhood and adolescence. Ann Surg Oncol 1997;4(3):223–7.Google Scholar
Ostrom, QT, Gittleman, H, Farah, P, et al. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol 2015;17(Suppl 4):iv1–iv62.Google Scholar
Buetow, PC, Smirniotopoulos, JG, Done, S. Congenital brain tumors: A review of 45 cases. AJNR Am J Neuroradiol 1990. 11(4):793–9.Google Scholar
Isaacs, H, Jr. I. Perinatal brain tumors: A review of 250 cases. Pediatr Neurol, 2002;27(4):249–61.Google Scholar
Severino, M, Schwartz, ES, Thurnher, MM, et al. Congenital tumors of the central nervous system. Neuroradiol J 2010;52(6):531–48.Google Scholar
Isaacs, H, Jr. II. Perinatal brain tumors: A review of 250 cases. Pediatr Neurol 2002;27(5):333–42.Google Scholar
Huang, X, Zhang, R, Zhou, LF. Diagnosis and treatment of intracranial immature teratoma. Pediatr Neurosurg 2009;45(5):354–60.Google Scholar
Arslan, E, Usul, H, Baykal, S, et al. Massive congenital intracranial immature teratoma of the lateral ventricle with retro-orbital extension: A case report and review of the literature. Pediatr Neurosurg 2007;43(4):338–42.Google Scholar
Im, SH, Wang, KC, Kim, SK, et al. Congenital intracranial teratoma: Prenatal diagnosis and postnatal successful resection. Med Pediatr Oncol 2003;40(1):5761.Google Scholar
Louis, DN, Ohgaki, H, Wiestler, OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114(2):97109.Google Scholar
Louis, DN, Perry, A, Reifenberger, G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol 2016;131(6):803–20.Google Scholar
Isaacs, H, Jr. Perinatal (fetal and neonatal) astrocytoma: A review. Childs Nerv Syst 2016;32(11):20852096.Google Scholar
Nageswara Rao, AA, Packer, RJ. Advances in the management of low-grade gliomas. Curr Oncol Rep 2014;16(8):398.Google Scholar
Kotulska, K, Borkowska, J, Mandera, M, et al. Congenital subependymal giant cell astrocytomas in patients with tuberous sclerosis complex. Childs Nerv Syst 2014;30(12):2037–42.Google Scholar
Franz, DN, Agricola, K, Mays, M, et al. Everolimus for subependymal giant cell astrocytoma: 5-year final analysis. Ann Neurol 2015;78(6):929–38.Google Scholar
Nemes, K, Bens, S, Bourdeaut, F, et al. Rhabdoid tumor predisposition syndrome. In Adam, MP, Ardinger, HH, Pagon, RA, et al., eds. GeneReviews® (Seattle, WA: University of Washington, 1993).Google Scholar
Nemes, K, Clément, N, Kachanov, D, et al. The extraordinary challenge of treating patients with congenital rhabdoid tumors: A collaborative European effort. Pediatr Blood Cancer 2018;65(6):e26999.Google Scholar
Schrey, D, Carceller Lechón, F, Malietzis, G, et al. Multimodal therapy in children and adolescents with newly diagnosed atypical teratoid rhabdoid tumor: Individual pooled data analysis and review of the literature. J Neurooncol 2016;126(1):8190.Google Scholar
Cavalli, FMG, Remke, M, Rampasek, L, et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell, 2017;31(6):737–54 e6.Google Scholar
Thalakoti, S, Geller, T. Basal cell nevus syndrome or Gorlin syndrome. Handb Clin Neurol 2015;132:119–28.CrossRefGoogle ScholarPubMed
Lafay-Cousin, L, Smith, A, Chi, SN, et al. Clinical, pathological, and molecular characterization of infant medulloblastomas treated with sequential high-dose chemotherapy. Pediatr Blood Cancer 2016;63(9):1527–34.Google Scholar
Lafay-Cousin, L, Fay-McClymont, T, Johnston, D, et al. Neurocognitive evaluation of long term survivors of atypical teratoid rhabdoid tumors (ATRT): The Canadian registry experience. Pediatr Blood Cancer 2015;62(7):1265–9.Google Scholar
Lafay-Cousin, L, Bouffet, E, Hawkins, C, et al. Impact of radiation avoidance on survival and neurocognitive outcome in infant medulloblastoma. Curr Oncol 2009;16(6):21–8.Google Scholar
Nimjee, SM, Powers, CJ, McLendon, RE, Grant, GA, Fuchs, HE. Single-stage bilateral choroid plexectomy for choroid plexus papilloma in a patient presenting with high cerebrospinal fluid output. J Neurosurg Pediatr 2010;5(4):342–5.Google Scholar
Fujimura, M, Onuma, T, Kameyama, M, et al. Hydrocephalus due to cerebrospinal fluid overproduction by bilateral choroid plexus papillomas. Childs Nerv Syst 2004;20(7):485–8.Google Scholar
Gopal, P, Parker, JR, Debski, R, Parker, JC Jr. Choroid plexus carcinoma. Arch Pathol Lab Med 2008;132(8):1350–4.Google Scholar
Gozali, AE, Britt, B, Shane, L, et al. Choroid plexus tumors; management, outcome, and association with the Li–Fraumeni syndrome: The Children’s Hospital Los Angeles (CHLA) experience, 1991–2010. Pediatr Blood Cancer 2012;58(6):905–9.Google Scholar
Powis, M. Neonatal renal tumours. Early Hum Dev 2010;86(10):607–12.Google Scholar
Isaacs, H Jr. Fetal and neonatal renal tumors. J Pediatr Surg 2008;43(9):1587–95.Google Scholar
England, RJ, Haider, N, Vujanic, GM, et al. Mesoblastic nephroma: A report of the United Kingdom Children’s Cancer and Leukaemia Group (CCLG). Pediatr Blood Cancer 2011;56(5):744748.Google Scholar
Lee, EY. CT imaging of mass-like renal lesions in children. Pediatr Radiol 2007;37(9):896907.Google Scholar
van den Heuvel‐Eibrink, MM, Grundy, P, Graf, N, et al. Characteristics and survival of 750 children diagnosed with a renal tumor in the first seven months of life: A collaborative study by the SIOP/GPOH/SFOP, NWTSG, and UKCCSG Wilms tumor study groups. Pediatr Blood Cancer 2008;50(6):1130–34.Google Scholar
Vokuhl, C, Nourkami-Tutdibi, N, Furtwängler, R, et al. ETV6–NTRK3 in congenital mesoblastic nephroma: A report of the SIOP/GPOH nephroblastoma study. Pediatr Blood Cancer 2018;65(4):e26925.Google Scholar
Patel, Y, Mitchell, CD, Hitchcock, RJ. Use of sarcoma-based chemotherapy in a case of congenital mesoblastic nephroma with liver metastases. Urology 2003;61(6):1260.Google Scholar
Glick, RD, Hicks, MJ, Nuchtern, JG, et al. Renal tumors in infants less than 6 months of age. J Pediatr Surg 2004;39(4):522–5.Google Scholar
Gooskens, S, Houwing, ME, Vujanic, GM, et al. Congenital mesoblastic nephroma 50 years after its recognition: A narrative review. Pediatr Blood Cancer 2017;64(7):e26437.Google Scholar
Royer-Pokora, B. Genetics of pediatric renal tumors. Pediatr Nephrol 2013;28(1):1323.Google Scholar
Beckwith, JB, Nephrogenic rests and the pathogenesis of Wilms tumor: Developmental and clinical considerations. Am J Med Genet 1998;79(4):268–73.Google Scholar
Fernandez, CV, Perlman, EJ, Mullen, EA, et al. Clinical outcome and biological predictors of relapse after nephrectomy only for very low-risk Wilms tumor: A report from Children’s Oncology Group AREN0532. Ann Surg 2017;265(4):835–40.Google Scholar
Tomlinson, GE, Breslow, NE, Dome, J, et al. Rhabdoid tumor of the kidney in the National Wilms’ Tumor Study: Age at diagnosis as a prognostic factor. J Clin Oncol 2005;23(30):7641–5.Google Scholar
Eaton, KW, Tooke, LS, Wainwright, LM, et al. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer, 2011;56(1):715.CrossRefGoogle ScholarPubMed
Ueno-Yokohata, H, Okita, H, Nakasato, K, et al. Consistent in-frame internal tandem duplications of BCOR characterize clear cell sarcoma of the kidney. Nat Genet 2015;47(8):861.Google Scholar
Cronin, KA, Ries, LA, Edwards, BK. The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. Cancer 2014;120(Suppl 23):3755–7.Google Scholar
Wan, MJ, VanderVeen, DK. Eye disorders in newborn infants (excluding retinopathy of prematurity). Arch Dis Child Fetal Neonatal Ed 2015;100(3):F264-9.Google Scholar
Skalet, AH, Gombos, DS, Gallie, BL, et al. Screening children at risk for retinoblastoma: Consensus Report from the American Association of Ophthalmic Oncologists and Pathologists. Ophthalmology 2018;125(3):45358.Google Scholar
Soliman, SE, Dimaras, H, Khetan, V, et al. Prenatal versus postnatal screening for familial retinoblastoma. Ophthalmology 2016;123(12):2610–17.Google Scholar
Hurwitz, R, et al. Retinoblastoma. In Pizzo, P, Poplack, D, eds. Principles and Practice of Pediatric Oncology, (Philadelphia, PA: Lippincott Williams & Wilkins, 2011), pp. 809–37.Google Scholar
Draper, GJ Sanders, BM, Brownbill, PA, Hawkins, MM. Patterns of risk of hereditary retinoblastoma and applications to genetic counselling. Br J Cancer 1992;66(1):211–9.Google Scholar
Abramson, DH, Frank, CM, Susman, M, et al. Presenting signs of retinoblastoma. J Pediatr 1998;132(3 Pt 1):505–8.Google Scholar
Gobin, YP, Dunkel, IJ, Marr, BP, et al. Combined, sequential intravenous and intra-arterial chemotherapy (bridge chemotherapy) for young infants with retinoblastoma. PLoS One, 2012;7(9):e44322.Google Scholar
Desandes, E, Guissou, S, Ducassou, S, Lacour, B. Neonatal solid tumors: Incidence and survival in France. Pediatr Blood Cancer 2016;63(8):1375–80.Google Scholar
Kamihara, J, Bourdeaut, F, Foulkes, WD, et al. Retinoblastoma and neuroblastoma predisposition and surveillance. Clin Cancer Res 2017;23(13):e98–e106.Google Scholar
Isaacs, H. Tumors of the Fetus and Infant: An Atlas, 2nd ed. (New York: Springer,2013).Google Scholar
Weinberg, AG, Finegold, MJ. Primary hepatic tumors in childhood. In Finegold, MJ, ed. Pathology of Neoplasia in Children and Adolescents (Philadelphia, PA: WB Saunders, 1986), pp. 333–65.Google Scholar
von Schweinitz, D. Neonatal liver tumours. Semin Neonatol 2003;8(5):403–10.Google Scholar
Boon, LM, Burrows, PE, Paltiel, HJ, et al. Hepatic vascular anomalies in infancy: A twenty-seven-year experience. J Pediatr 1996;129(3):346–54.Google Scholar
Cohen, RC, Myers, NA. Diagnosis and management of massive hepatic hemangiomas in childhood. J Pediatr Surg 1986;21(1):69.Google Scholar
Isaacs, H, Jr. Fetal and neonatal hepatic tumors. J Pediatr Surg 2007;42(11):1797–803.Google Scholar
DeMaioribus, CA, Lally, KP, Sim, K, Isaacs, H, Mahour, GH. Mesenchymal hamartoma of the liver. A 35-year review. Arch Surg 1990;125(5):598600.Google Scholar
Stringer, MD, Alizai, NK. Mesenchymal hamartoma of the liver: A systematic review. J Pediatr Surg 2005;40(11):1681–90.CrossRefGoogle ScholarPubMed
Anil, G, Fortier, M, Low, Y. Cystic hepatic mesenchymal hamartoma: The role of radiology in diagnosis and perioperative management. Br J Radiol 2011;84(1001):e91–4.Google Scholar
Hiyama, E. Pediatric hepatoblastoma: Diagnosis and treatment. Transl Pediatr 2014;3(4):293–9.Google Scholar
Fernandez-Pineda, I, Cabello-Laureano, R. Differential diagnosis and management of liver tumors in infants. World J Hepatol 2014;6(7):486–95.Google Scholar
Oue, T, Kubota, A, Okuyama, H, et al. Hepatoblastoma in children of extremely low birth weight: a report from a single perinatal center. J Pediatr Surg 2003;38(1):134–7; discussion 134–7.Google Scholar
Kapfer, SA, Petruzzi, MJ, Caty, MG. Hepatoblastoma in low birth weight infants: An institutional review. Pediatr Surg Int 2004;20(10):753–6.Google Scholar
Pizzo, P, Poplack, D. Principles and Practice of Pediatric Oncology, 6th ed. (Philadelphia, PA: Lippincott Williams & Wilkins,2011).Google Scholar
De Ioris, M, Brugieres, L, Zimmermann, A, et al. Hepatoblastoma with a low serum alpha-fetoprotein level at diagnosis: The SIOPEL group experience. Eur J Cancer 2008;44(4):545–50.Google Scholar
Davidoff, AM, Fernandez-Pineda, I, Santana, VM, Shochat, SJ. The role of neoadjuvant chemotherapy in children with malignant solid tumors. Semin Pediatr Surg 2012;21(1):8899.Google Scholar
Perilongo, G, Shafford, E, Maibach, R, et al. Risk-adapted treatment for childhood hepatoblastoma. final report of the second study of the International Society of Paediatric Oncology–SIOPEL 2. Eur J Cancer 2004;40(3):411–21.Google Scholar
Trobaugh‐Lotrario, AD, Chaiyachati, BH, Meyers, RL, et al. Outcomes for patients with congenital hepatoblastoma. Pediatr Blood Cancer 2013;60(11):1817–25.Google Scholar
Dall’Igna, P, Brugieres, L, Christin, AS, et al. Hepatoblastoma in children aged less than six months at diagnosis: A report from the SIOPEL group. Pediatr Blood Cancer 2018;65(1):e26791.Google Scholar
Wassef, M, Blei, F, Adams, D, et al. Vascular anomalies classification: Recommendations from the International Society for the Study of Vascular Anomalies. Pediatrics 2015;136(1):e203-e214.Google Scholar
Darrow, DH, Greene, AK, Mancini, AJ, Nopper, AJ. Diagnosis and management of infantile hemangioma: Executive summary. Pediatrics 2015;136(4):786–91.Google Scholar
Munden, A, Butschek, R, Tom, WL, et al. Prospective study of infantile haemangiomas: Incidence, clinical characteristics and association with placental anomalies. Br J Dermatol 2014;170(4):907–13.Google Scholar
Bruckner, AL, Frieden, IJ. Hemangiomas of infancy. J Am Acad Dermatol 2003;48(4):477–93; quiz 494–6.Google Scholar
Darrow, DH, Greene, AK, Mancini, AJ, et al. Diagnosis and management of infantile hemangioma. Pediatrics 2015; 136(4):e1060e1104.Google Scholar
Metry, D, Heyer, G, Hess, C, et al. Consensus statement on diagnostic criteria for PHACE syndrome. Pediatrics 2009;124(5):1447–56.Google Scholar
Buckmiller, L, Dyamenahalli, U, Richter, GT. Propranolol for airway hemangiomas: case report of novel treatment. Laryngoscope 2009;119(10):2051–4.Google Scholar
Keller, RG, Patel, KG. Evidence-based medicine in the treatment of infantile hemangiomas. Facial Plast Surg Clin North Am 2015;23(3):373–92.Google Scholar
Mazereeuw-Hautier, J, Hoeger, PH, Benlahrech, S, et al. Efficacy of propranolol in hepatic infantile hemangiomas with diffuse neonatal hemangiomatosis. J Pediatr 2010;157(2):340–2.Google Scholar
Wasserman, JD, Mahant, S, Carcao, M, Perlman, K, Pope, E. Vincristine for successful treatment of steroid-dependent infantile hemangiomas.Pediatrics 2015;135(6):e1501–5.Google Scholar
Vlahovic, A, Simic, R, Djokic, D, Ceran, C. Diffuse neonatal hemangiomatosis treatment with cyclophosphamide: A case report. J Pediatr Hematol Oncol 2009;31(11):858–60.Google Scholar
Sundar Alagusundaramoorthy, S, Vilchez, V, Zanni, A, et al. Role of transplantation in the treatment of benign solid tumors of the liver: a review of the United Network of Organ Sharing data set. JAMA Surg 2015;150(4):337–42.Google Scholar
North, PE, Waner, M, James, CA, et al. Congenital nonprogressive hemangioma: A distinct clinicopathologic entity unlike infantile hemangioma. Arch Dermatol 2001;137(12):1607–20.Google Scholar
Subash, A, Senthil, GK, Ramamoorthy, R, Appasamy, A, Selvarajan, N. Kaposiform hemangioendothelioma with Kasabach–Merritt phenomenon in a neonate of life- and limb-threatening nature: A case report. J Indian Assoc Pediatr Surg 2015;20(4):194–6.Google Scholar
Arunachalam, P, Kumar, VR, Swathi, D. Kasabach–Merritt syndrome with large cutaneous vascular tumors. J Indian Assoc Pediatr Surg 2012;17(1):33–6.Google Scholar
Fahrtash, F, McCahon, E, Arbuckle, S. Successful treatment of kaposiform hemangioendothelioma and tufted angioma with vincristine. J Pediatr Hematol Oncol 2010;32(6):506–10.Google Scholar
Fernandez-Pineda, I, Lopez-Gutierrez, JC, Chocarro, G, Bernabeu-Wittel, J, Ramirez-Villar, GL. Long-term outcome of vincristine-aspirin-ticlopidine (VAT) therapy for vascular tumors associated with Kasabach–Merritt phenomenon. Pediatr Blood Cancer 2013;60(9):1478–81.Google Scholar
Acharya, S, Pillai, K, Francis, A, Criton, S, Parvathi, VK. Kasabach–Merritt syndrome: Management with interferon. Indian J Dermatol, 2010;55(3):281–3.Google Scholar
Filippi, L, Tamburini, A, Berti, E, et al. Successful propranolol treatment of a kaposiform hemangioendothelioma apparently resistant to propranolol. Pediatr Blood Cancer 2016;63(7):1290–2.Google Scholar
Chiu, YE, Drolet, BA, Blei, F, et al. Variable response to propranolol treatment of kaposiform hemangioendothelioma, tufted angioma, and Kasabach–Merritt phenomenon. Pediatr Blood Cancer 2012;59(5):934–8.Google Scholar
Hammill, AM, Wentzel, M, Gupta, A, et al. Sirolimus for the treatment of complicated vascular anomalies in children. Pediatr Blood Cancer 2011;57(6):1018–24.Google Scholar
Schaefer, BA, Wang, D, Merrow, AC, Dickie, BH, Adams, DM. Long-term outcome for kaposiform hemangioendothelioma: A report of two cases. Pediatr Blood Cancer 2017;64(2):284–6.Google Scholar
Krafchik, B, Pope, E, Walsch, SRA. Histiocytosis of the skin in children and adults. In Weitzman, S, Egeler, MR, eds. Histiocytic Disorders of Children and Adults (Cambridge, UK: Cambridge University Press, 2005), pp. 130–53.Google Scholar
Minkov, M, Prosch, H, Steiner, M, et al. Langerhans cell histiocytosis in neonates. Pediatr Blood Cancer 2005;45(6):802–7.CrossRefGoogle ScholarPubMed
Stein, SL, Paller, AS, Haut, PR, Mancini, AJ. Langerhans cell histiocytosis presenting in the neonatal period: A retrospective case series. Arch Pediatr Adolesc Med 2001;155(7):778–83.Google Scholar
Isaacs, H, Jr. Fetal and neonatal histiocytoses. Pediatr Blood Cancer 2006;47(2):123–9.Google Scholar
Ladisch, S, Jaffe, E. The histiocytoses. In Pizzo, P, Poplack, D, eds. Principles and Practice of Pediatric Oncology (Philadelphia, PA: Lippincott, 2006).Google Scholar
Suzuki, N, Morimoto, A, Ohga, S, et al. Characteristics of hemophagocytic lymphohistiocytosis in neonates: a nationwide survey in Japan. J Pediatr 2009;155(2):235–8, e1.Google Scholar
Janka, GE. Familial and acquired hemophagocytic lymphohistiocytosis. Annu Rev Med 2012;63:233–46.Google Scholar
Henter, JI, Horne, A, Aricó, M, et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 2007;48(2):124–31.Google Scholar
Bergsten, E, Horne, A, Aricó, M, et al. Confirmed efficacy of etoposide and dexamethasone in HLH treatment: Long-term results of the cooperative HLH-2004 study. Blood 2017;130(25):2728–38.Google Scholar
Weitzman, S, Whitlock, J. Uncommon histiocytic disorder: The non-Langerhans cell histiocytosis. In Weitzman, S, Egeler, MR, eds. Histiocytic Disorders of Children and Adults (Cambridge, UK:Cambridge University Press, 2005), pp. 293320.Google Scholar
Oza, VS, Stringer, T, Campbell, C, et al. Congenital-type juvenile xanthogranuloma: A case series and literature review. Pediatr Dermatol 2018;35(5):582–7.Google Scholar
Yule, SM, Boddy, AV, Cole, M, et al. Cyclophosphamide pharmacokinetics in children. Br J Clin Pharmacol 1996;41(1):1319.Google Scholar
Periclou, AP, Avramis, VI. NONMEM population pharmacokinetic studies of cytosine arabinoside after high-dose and after loading bolus followed by continuous infusion of the drug in pediatric patients with leukemias. Cancer Chemother Pharmacol 1996;39(1–2):4250.Google Scholar
McLeod, HL, Relling, MV, Crom, WR, et al. Disposition of antineoplastic agents in the very young child. Br J Cancer Suppl 1992;18:S23–9.Google Scholar
Kearns, GL, Abdel-Rahman, SM, Alander, SW, et al. Developmental pharmacology: Drug disposition, action, and therapy in infants and children. N Engl J Med 2003;349(12):1157–67.Google Scholar
Hutson, JR, Weitzman, S, Schechter, T, et al. Pharmacokinetic and pharmacogenetic determinants and considerations in chemotherapy selection and dosing in infants. Expert Opin Drug Metab Toxicol 2012;8(6):709722.Google Scholar
Weitzman, S, Grant, R. Neonatal oncology: diagnostic and therapeutic dilemmas. Semin Perinatol 1997;21(1):102–11.Google Scholar
Littman, P, D’Angio, GJ. Radiation therapy in the neonate. Am J Pediatr Hematol Oncol 1981;3(3):279–85.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×