Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T22:06:21.178Z Has data issue: false hasContentIssue false

Chapter 10 - Neonatal Hemolysis

from Section III - Erythrocyte Disorders

Published online by Cambridge University Press:  30 January 2021

Pedro A. de Alarcón
Affiliation:
University of Illinois College of Medicine
Eric J. Werner
Affiliation:
Children's Hospital of the King's Daughters
Robert D. Christensen
Affiliation:
University of Utah
Martha C. Sola-Visner
Affiliation:
Harvard University, Massachusetts
Get access

Summary

This chapter focuses on the recognition and management of hemolysis in newborn infants (). Some of the common hemolytic anemias of childhood first appear in the newborn period, while others do not present until several months of age, and a few rare hemolytic disorders occur only in the neonatal period. These variations in the age that hemolytic anemia first presents reflect differences in neonatal erythropoiesis, hemoglobin synthesis, and the metabolism of newborn erythrocytes. When approaching an infant with a potential hemolytic disorder, the first issue to be addressed is whether there is evidence of increased red-cell destruction and accelerated production. If yes, then the next question to consider is whether the cause of neonatal hemolysis is due to extracellular (acquired) factors or an intrinsic (genetic) red-cell defect. Acquired disorders are those that are immune mediated, associated with infection, or accompany some other underlying pathology. Inherited red-cell disorders are due to defects in the cell membrane, abnormalities in red blood cell (RBC) metabolism, or a consequence of a hemoglobin defect.

Type
Chapter
Information
Neonatal Hematology
Pathogenesis, Diagnosis, and Management of Hematologic Problems
, pp. 155 - 184
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pearson, HA. Life-span of the fetal red blood cell. J Pediatr 1967;70(2):166–71.Google Scholar
Oski, FA, Naiman, JL. Hematologic Problems in the Newborn, 3rd ed. (Philadelphia, PA: W. B. Saunders, 1982), pp. 1360.Google Scholar
Matovcik, LM, Mentzer, WC. The membrane of the human neonatal red cell. Clin Haematol 1985;14(1):203–21.Google Scholar
Matovcik, LM, Chiu, D, Lubin, B, et al. The aging process of human neonatal erythrocytes. Pediatr Res 1986;20(11):1091–6.CrossRefGoogle ScholarPubMed
Advani, R, Mentzer, W, Andrews, D, Schrier, S. Oxidation of hemoglobin F is associated with the aging process of neonatal red blood cells. Pediatr Res 1992;32(2):165–8.Google Scholar
Widness, JA, Kuruvilla, DJ, Mock, DM, et al. autologous infant and allogeneic adult red cells demonstrate similar concurrent post-transfusion survival in very low birth weight neonates. J Pediatr 2015;167(5):1001–6.Google Scholar
Kuruvilla, DJ, Widness, JA, Nalbant, D, et al. Estimation of adult and neonatal RBC lifespans in anemic neonates using RBCs labeled at several discrete biotin densities. Pediatr Res 2017;81(6):905–10.Google Scholar
Geaghan, SM. Hematologic values and appearances in the healthy fetus, neonate, and child. Clin Lab Med 1999;19(1):137, v.Google Scholar
Holroyde, CP, Oski, FA, Gardner, FH. The pocked erythrocyte red-cell surface alterations in reticuloendothelial immaturity of the neonate. N Engl J Med 1969;281(10):516–20.CrossRefGoogle ScholarPubMed
Padmanabhan, J, Risemberg, HM, Rowe, RD Howell-Jolly bodies in the peripheral blood of full-term and premature neonates. Johns Hopkins Med J 1973;132(3):146–50.Google ScholarPubMed
Maisels, MJ, Pathak, ANelson, NM, Nathan, DG, Smith, CA. Endogenous production of carbon monoxide in normal and erythroblastotic newborn infants. J Clin Invest 1971;50(1):18.Google Scholar
Arias, IM. The pathogenesis of physiologic jaundice of the newborn: A reevaluation. Birth Defects Orig Artic Ser 1970;6(2):55–9.Google Scholar
Bhutani, VK, Johnson, L, Sivieri, EM. Predictive ability of a predischarge hour-specific serum bilirubin for subsequent significant hyperbilirubinemia in healthy term and near-term newborns. Pediatrics 1999;103(1):614.Google Scholar
Necheles, TF, Rai, US, Valaes, T. The role of haemolysis in neonatal hyperbilirubinaemia as reflected in carboxyhaemoglobin levels. Acta Paediatr Scand 1976;65(3):361–7.CrossRefGoogle ScholarPubMed
Coburn, RF, Williams, WJ, Kahn, SB. Endogenous carbon monoxide production in patients with hemolytic anemia. J Clin Invest 1966;45(4):460–8.CrossRefGoogle ScholarPubMed
Coburn, RF. Endogenous carbon monoxide production. N Engl J Med 1970;282(4):207–9.Google Scholar
Smith, DW, Inguillo, D, Martin, D, et al. Use of noninvasive tests to predict significant jaundice in full-term infants: Preliminary studies. Pediatrics 1985;75(2):278–80.Google Scholar
Stevenson, DK, Vreman, HJ. Carbon monoxide and bilirubin production in neonates. Pediatrics 1997;100(2 Pt 1):252–4.Google Scholar
Salmi, TT Haptoglobin levels in the plasma of newborn infants with special reference to infections. Acta Paediatr Scand Suppl 1973;241:155.Google Scholar
Freda, VJ, Gorman, JG, Pollack, W, Bowe, E. Prevention of Rh hemolytic disease–ten years’ clinical experience with Rh immune globulin. N Engl J Med 1975;292(19):1014–16.Google Scholar
Baumann, R, Rubin, H. Autoimmune hemolytic anemia during pregnancy with hemolytic disease in the newborn. Blood 1973;41(2):293–7.CrossRefGoogle ScholarPubMed
Hocking, DR. Neonatal haemolytic disease due to dapsone. Med J Aust 1968;1(26):1130–1.Google Scholar
Durocher, JR, Payne, RC, Conrad, ME. Role of sialic acid in erythrocyte survival. Blood 1975;45(1):1120.CrossRefGoogle ScholarPubMed
Batton, DG, Amanullah, A, Comstock, C. Fetal schistocytic hemolytic anemia and umbilical vein varix. J Pediatr Hematol Oncol 2000;22(3):259–61.CrossRefGoogle ScholarPubMed
Oski, FA, Barness, LA. Vitamin E deficiency:a previously unrecognized cause of hemolytic anemia in the premature infant. J Pediatr 1967;70(2):211–20.Google Scholar
Ritchie, JH, Fish, MB, McMasters, V, Grossman, M. Edema and hemolytic anemia in premature infants A vitamin E deficiency syndrome. N Engl J Med 1968;279(22):1185–90.Google Scholar
Gomez-Pomar, E, Hatfield, E, Garlitz, K, Westgate, PM, Bada, HS. Vitamin E in the preterm infant: A forgotten cause of hemolytic anemia. Am J Perinatol 2018;35(3):305–10.Google Scholar
Smith, H. Normal Values and Appearances: Diagnosis in Paediatric Haematology (New York: Churchill Livingstone, 1996) p. 338.Google Scholar
Tuffy, P, Brown, AK, Zuelzer, WW. Infantile pyknocytosis: A common erythrocyte abnormality of the first trimester. AMA J Dis Child 1959;98(2):227–41.Google Scholar
Zannos-Mariolea, L, Kattamis, C, Paidoucis, M. Infantile pyknocytosis and glucose-6-phosphate dehydrogenase deficiency. Br J Haematol 1962;8:258–65.Google Scholar
Keimowitz, R, Desforges, JF. Infantile pyknocytosis. N Engl J Med 1965;273(21):1152–4.Google Scholar
Ackerman, BD. Infantile pyknocytosis in Mexican-American infants. Am J Dis Child 1969;117(4):417–23.Google Scholar
Dabbous, IA, El Bahlawan, L. Infantile pyknocytosis: A forgotten or a dead diagnosis? J Pediatr Hematol Oncol 2002;24(6):507.Google Scholar
Eyssette-Guerreau, S, Bader-Meunier, B, Garcon, L, Guitton, C, Cynober, T. Infantile pyknocytosis: A cause of haemolytic anaemia of the newborn. Br J Haematol 2006; 133(4):439–2.Google Scholar
Dahoui, HA, Abboud, MR, Saab, R, et al. Familial infantile pyknocytosis in association with pulmonary hypertension. Pediatr Blood Cancer 2008;51(2):290–2.Google Scholar
Kraus, D, Yacobovich, J, Hoffer, V, et al. Infantile pyknocytosis: A rare form of neonatal anemia. Isr Med Assoc J 2010;12(3):188–9.Google ScholarPubMed
Vos, MJ, Martens, D, van de Leur, SJ, van Wijk, R. Neonatal hemolytic anemia due to pyknocytosis. Eur J Pediatr 2014;173(12):1711–14.Google Scholar
Rees, C, Lund, K, Bain, BJ. Infantile pyknocytosis. Am J Hematol 2019;94(4):489–90.Google Scholar
Gallagher, PG. Abnormalities of the erythrocyte membrane. Pediatr Clin North Am 2013;60(6):1349–62.Google Scholar
Gallagher, PG, Glader, B. Hereditary spherocytosis, hereditary elliptocytosis, and other disorders associated with abnormalities of the erythrocyte membrane. In Greer, JP, Rodgers, GM, Glader, B, et al., eds. Wintrobe’s Clinical Hematology (Philadelphia PA: Wolters Kluwer/Lippincott Williams & Wilkins, 2019), pp. 720–41.Google Scholar
Morton, NE, Mackinney, AA, Kosower, N, Schilling, RF, Gray, MP. Genetics of spherocytosis. Am J Hum Genet 1962;14:170–84.Google Scholar
Perrotta, S, Gallagher, PG, Mohandas, N . Hereditary spherocytosis. Lancet 2008;372(9647):1411–26.Google Scholar
Agre, P, Asimos, A, Casella, JF McMillan, C. Inheritance pattern and clinical response to splenectomy as a reflection of erythrocyte spectrin deficiency in hereditary spherocytosis. N Engl J Med 1986;315(25):1579–83.CrossRefGoogle ScholarPubMed
Eber, SW, Pekrun, A, Neufeldt, A, Schroter, W. Prevalence of increased osmotic fragility of erythrocytes in German blood donors: Screening using a modified glycerol lysis test. Ann Hematol 1992;64(2):8892.Google Scholar
Palek, J, Jarolim, P. Clinical expression and laboratory detection of red blood cell membrane protein mutations. Semin Hematol 1993;30(4):249–83.Google Scholar
Stamey, CC, Diamond, LK. Congenital hemolytic anemia in the newborn: Relationship to kernicterus. AMA J Dis Child 1957;94(6):616–22.CrossRefGoogle ScholarPubMed
Trucco, JI, Brown, AK. Neonatal manifestations of hereditary spherocytosis. Am J Dis Child 1967;113(2):263–70.Google ScholarPubMed
Rubins, J, Young, LE. Hereditary spherocytosis and glucose-6-phosphate dehydrogenase deficiency. JAMA 1977;237(8):797–8.Google Scholar
49. Christensen, RD, Yaish, HM, Gallagher, PG. A pediatrician’s practical guide to diagnosing and treating hereditary spherocytosis in neonates. Pediatrics 2015;135(6):1107–14.Google Scholar
King, MJ, Behrens, J, Rogers, C, et al. Rapid flow cytometric test for the diagnosis of membrane cytoskeleton-associated haemolytic anaemia. Br J Haematol 2000;111(3):924–33.Google ScholarPubMed
Christensen, RD, Agarwal, AM, Nussenzveig, RH, et al. Evaluating eosin-5-maleimide binding as a diagnostic test for hereditary spherocytosis in newborn infants. J Perinatol 2015;35(5):357–61.Google Scholar
Agarwal, AM, Nussenzveig, RH, Reading, NS, et al. Clinical utility of next-generation sequencing in the diagnosis of hereditary haemolytic anaemias. Br J Haematol 2016;174(5):806–14.Google Scholar
Andolfo, I, Russo, R, Gambale, A, Iolascon, A. New insights on hereditary erythrocyte membrane defects. Haematologica 2016;101(11):1284–94.Google Scholar
Iolascon, A, Faienza, MF, Moretti, A, Perrotta, S, Miraglia del Giudice, E. UGT1 promoter polymorphism accounts for increased neonatal appearance of hereditary spherocytosis. Blood 1998;91(3):1093.CrossRefGoogle ScholarPubMed
Gallagher, PG, Petruzzi, MJ, Weed, SA, et al. Mutation of a highly conserved residue of betaI spectrin associated with fatal and near-fatal neonatal hemolytic anemia. J Clin Invest 1997;99(2):267277.Google Scholar
Delhommeau, F, Cynober, T, Schischmanoff, PO, et al. Natural history of hereditary spherocytosis during the first year of life. Blood 2000;95(2):393–7.CrossRefGoogle ScholarPubMed
Diamond, LK. Splenectomy in childhood and the hazard of overwhelming infection. Pediatrics 1969;43(5):886–9.CrossRefGoogle ScholarPubMed
Tracy, ET, Rice, HE. Partial splenectomy for hereditary spherocytosis. Pediatr Clin North Am 2008;55(2):503–19, x.Google Scholar
Niss, O, Chonat, S, Dagaonkar, N, et al. Genotype-phenotype correlations in hereditary elliptocytosis and hereditary pyropoikilocytosis. Blood Cells Mol Dis 2016;61:49.Google Scholar
Austin, RF, Desforges, JF. Hereditary elliptocytosis: An unusual presentation of hemolysis in the newborn associated with transient morphologic abnormalities. Pediatrics 1969;44(2):196200.Google Scholar
MacDougall, LG, Moodley, G, Quirk, M. The pyropoikilocytosis-elliptocytosis syndrome in a black South African infant: Clinical and hematological features. Am J Pediatr Hematol Oncol 1982;4(3):344–9.Google Scholar
Mentzer, WC, Jr, Iarocci, TA, Mohandas, N, et al. Modulation of erythrocyte membrane mechanical stability by 2,3-diphosphoglycerate in the neonatal poikilocytosis/elliptocytosis syndrome. J Clin Invest 1987;79(3):943–9.CrossRefGoogle ScholarPubMed
Luzzatto, L, Nannelli, C, Notaro, R. Glucose-6-phosphate dehydrogenase deficiency. Hematol Oncol Clin North Am 2016;30(2):373–93.Google Scholar
Grace, RF, Glader, B. Red blood cell enzyme disorders. Pediatr Clin North Am 2018;65(3):579–95.Google Scholar
Glader, B, Grace, RF. Hereditary hemolytic anemias due to red blood cell enzyme disorders. In Greer, JP, Rodgers, GM, Glader, B, et al., eds. Wintrobe’s Clinical Hematology (Philadelphia PA: Wolters Kluwer/Lippincott Williams & Wilkins, 2019), pp. 742–61.Google Scholar
Glader, B. Hereditary hemolytic anemias due to red blood cell enzyme disorders. In Greer, JP, Foerster, J, Lukens, JN, et al., eds. Wintrobe’s Clinical Hematology (Philadelphia PA: Wolters Kluwer/Lippincott Williams & Wilkins Health, 2003).Google Scholar
Cappellini, MD, Fiorelli, G Glucose-6-phosphate dehydrogenase deficiency. Lancet 2008;371(9606):6474.Google Scholar
WHO Working Group. Glucose-6-phosphate dehydrogenase deficiency. Bull World Health Organ 1989;67:601–11.Google Scholar
Beutler, E. The molecular biology of enzymes of erythrocyte metabolism. In Stamatoyannopoulos, G, ed. The Molecular Basis of Blood Diseases (Philadelphia PA: W.B. Saunders, 2001).Google Scholar
Jiang, W, Yu, G, Liu, P, et al. Structure and function of glucose-6-phosphate dehydrogenase-deficient variants in Chinese population. Hum Genet 2006;119(5):463–78.Google Scholar
Valaes, T. Severe neonatal jaundice associated with glucose-6-phosphate dehydrogenase deficiency: Pathogenesis and global epidemiology. Acta Paediatr Suppl 1994;394:5876.Google Scholar
Kaplan, M, Algur, N, Hammerman, C. Onset of jaundice in glucose-6-phosphate dehydrogenase-deficient neonates. Pediatrics 2001;108(4):9569.Google Scholar
Johnson, L, Bhutani, VK, Karp, K, Sivieri, EM, Shapiro, SM. Clinical report from the pilot USA Kernicterus Registry (1992 to 2004). J Perinatol 2009;29(Suppl 1):S2545.Google Scholar
Bienzle, U, Effiong, C, Luzzatto, L. Erythrocyte glucose 6-phosphate dehydrogenase deficiency (G6PD type A–) and neonatal jaundice. Acta Paediatr Scand 1976;65(6):701–3.Google Scholar
Kaplan, M, Hammerman, C, Feldman, R, Brisk, R. Predischarge bilirubin screening in glucose-6-phosphate dehydrogenase-deficient neonates. Pediatrics 2000;105(3 Pt 1):533–7.Google Scholar
Kaplan, M, Hammerman, C, Beutler, E. Hyperbilirubinaemia, glucose-6-phosphate dehydrogenase deficiency and Gilbert syndrome. Eur J Pediatr 2001;160(3):195.Google Scholar
Slusher, TM, Vreman, HJ, McLaren, DW, et al.Glucose-6-phosphate dehydrogenase deficiency and carboxyhemoglobin concentrations associated with bilirubin-related morbidity and death in Nigerian infants. J Pediatr 1995;126(1):102–8.Google Scholar
Oyebola, DD. Care of the neonate and management of neonatal jaundice as practised by Yoruba traditional healers of Nigeria. J Trop Pediatr 1983;29(1):1822.CrossRefGoogle ScholarPubMed
Mentzer, WC, Collier, E. Hydrops fetalis associated with erythrocyte G-6-PD deficiency and maternal ingestion of fava beans and ascorbic acid. J Pediatr 1975;86(4):565–7.Google Scholar
MacDonald, MG. Hidden risks: Early discharge and bilirubin toxicity due to glucose 6-phosphate dehydrogenase deficiency. Pediatrics 1995;96(4 Pt 1):734–8.Google Scholar
Kaplan, M, Hammerman, C. The need for neonatal glucose-6-phosphate dehydrogenase screening: A global perspective. J Perinatol 2009;29(Suppl1):S4652.CrossRefGoogle ScholarPubMed
Meloni, T, Forteleoni, G, Meloni, GF. Marked decline of favism after neonatal glucose-6-phosphate dehydrogenase screening and health education: The northern Sardinian experience. Acta Haematol 1992;87(1–2):2931.Google Scholar
American Academy of Pediatrics Subcommittee on Hyperbilirubinemia Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 2004;114(1):297316.Google Scholar
Lin, Z, Fontaine, JM, Freer, DE, Naylor, EW. Alternative DNA-based newborn screening for glucose-6-phosphate dehydrogenase deficiency. Mol Genet Metab 2005;86(1–2):212–19.Google Scholar
Watchko, JF, Kaplan, M, Stark, AR, Stevenson, DK, Bhutani, VK. Should we screen newborns for glucose-6-phosphate dehydrogenase deficiency in the United States? J Perinatol 2013;33:499.Google Scholar
Bhutani, VK, Kaplan, M, Glader, B, et al. Point-of-care quantitative measure of glucose-6-phosphate dehydrogenase enzyme deficiency. Pediatrics 2015;136(5):e1268–75.Google Scholar
Kaplan, M, Vreman, HJ, Hammerman, C, et al. Contribution of haemolysis to jaundice in Sephardic Jewish glucose-6-phosphate dehydrogenase deficient neonates. Br J Haematol 1996;93(4):822–7.Google Scholar
Kappas, A, Drummond, GS, Valaes, T. A single dose of Sn-mesoporphyrin prevents development of severe hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient newborns. Pediatrics 2001;108(1):2530.CrossRefGoogle ScholarPubMed
McCurdy, PR, Morse, EE. Glucose-6-phosphate dehydrogenase deficiency and blood transfusion. Vox Sang 1975;28(3):230–7.Google Scholar
Mimouni, F, Shohat, S, Reisner, SH. G6PD-deficient donor blood as a cause of hemolysis in two preterm infants. Isr J Med Sci 1986;22(2):120–2.Google Scholar
Kumar, P, Sarkar, S, Narang, A. Acute intravascular haemolysis following exchange transfusion with G-6-PD deficient blood. Eur J Pediatr 1994;153(2):98–9.Google Scholar
Grace, RF, Zanella, A, Neufeld, EJ, et al. Erythrocyte pyruvate kinase deficiency: 2015 status report. Am J Hematol 2015;90(9):825–30.Google Scholar
Grace, RF, Bianchi, P, van Beers, EJ, et al. Clinical spectrum of pyruvate kinase deficiency: Data from the Pyruvate Kinase Deficiency Natural History Study. Blood 2018;131(20):2183–92.Google Scholar
Beutler, E, Gelbart, T. Estimating the prevalence of pyruvate kinase deficiency from the gene frequency in the general white population. Blood 2000;95(11):3585–8.Google Scholar
Carey, PJ, Chandler, J, Hendrick, A, et al. Prevalence of pyruvate kinase deficiency in northern European population in the north of England Northern Region Haematologists Group. Blood 2000;96(12):4005–6.Google Scholar
Zanella, A, Fermo, E, Bianchi, P, Chiarelli, LR, Valentini, G. Pyruvate kinase deficiency: The genotype-phenotype association. Blood Rev 2007;21(4):217–31.Google Scholar
Grace, RF, Layton, DM, Barcellini, W. How we manage patients with pyruvate kinase deficiency. Br J Haematol 2019;189:721–34.Google Scholar
Bowman, HS, McKusick, VA, Dronamraju, KR. Pyruvate kinase deficient hemolytic anemia in an Amish isolate. Am J Hum Genet 1965;17:18.Google Scholar
Rider, NL, Strauss, KA Brown, K, et al. Erythrocyte pyruvate kinase deficiency in an old-order Amish cohort: Longitudinal risk and disease management. Am J Hematol 2011;86(10):827–34.Google Scholar
Gallagher, PG, Glader, B. Diagnosis of pyruvate kinase deficiency. Pediatr Blood Cancer 2016;63(5):771–2.Google Scholar
Bianchi, P, Fermo, E, Glader, B, et al. Addressing the diagnostic gaps in pyruvate kinase deficiency: Consensus recommendations on the diagnosis of pyruvate kinase deficiency. Am J Hematol 2019;94(1):149–61.CrossRefGoogle ScholarPubMed
Hutton, JJ, Chilcote, RR, Glucose phosphate isomerase deficiency with hereditary nonspherocytic hemolytic anemia. J Pediatr 1974;85(4):494–7.CrossRefGoogle ScholarPubMed
Schroter, W, Koch, HH, Wonneberger, B, et al. Glucose phosphate isomerase deficiency with congenital nonspherocytic hemolytic anemia: A new variant (type Nordhorn;IClinical and genetic studies. Pediatr Res 1974;8(1):1825.Google Scholar
Van Biervliet, JP, Van Milligen-Boersma, L, Staal, GE. A new variant of glucosephosphate isomerase deficiency (GPI-Utrecht). Clin Chim Acta 1975;65(2):157–65.Google Scholar
Ravindranath, Y, Paglia, DE, Warrier, I, et al. Glucose phosphate isomerase deficiency as a cause of hydrops fetalis. N Engl J Med 1987;316(5):258–61.Google Scholar
Xu, W, Beutler, E. The characterization of gene mutations for human glucose phosphate isomerase deficiency associated with chronic hemolytic anemia. J Clin Invest 1994;94(6):2326–9.CrossRefGoogle ScholarPubMed
Vora, S. Isozymes of phosphofructokinase. Isozymes Curr Top Biol Med Res 1982;6:119–67.Google Scholar
Vora, S, DiMauro, S, Spear, D, Harker, D, Danon, MJ. Characterization of the enzymatic defect in late-onset muscle phosphofructokinase deficiency: New subtype of glycogen storage disease type VII. J Clin Invest 1987;80(5):1479–85.Google Scholar
Schneider, AS, Valentine, WN, Hattori, M, Heins, HL Jr. Hereditary hemolytic anemia with triosephosphate isomerase deficiency. N Engl J Med 1965;272:229–35.Google Scholar
Valentine, WN, Hsieh, HS, Paglia, DE, et al. Hereditary hemolytic anemia: Association with phosphoglycerate kinase deficiency in erythrocytes and leukocytes. Trans Assoc Am Physicians 1968;81:4965.Google ScholarPubMed
Schneider, A, Westwood, B, Yim, C, et al. Triosephosphate isomerase deficiency: Repetitive occurrence of point mutation in amino acid 104 in multiple apparently unrelated families. Am J Hematol 1995;50(4):263–8.Google Scholar
112. Valentine, WN, Oski, FA, Paglia, DE, et al. Hereditary hemolytic anemia with hexokinase deficiency: Role of hexokinase in erythrocyte aging. N Engl J Med 1967;276(1):111.Google Scholar
Kanno, H. Hexokinase: Gene structure and mutations. Baillieres Best Pract Res Clin Haematol 2000;13(1):838.Google Scholar
Beutler, E. Red cell enzyme defects as nondiseases and as diseases. Blood 1979;54(1):17.Google Scholar
Beutler, E, Baranko, PV, Feagler, J, et al. Hemolytic anemia due to pyrimidine-5’-nucleotidase deficiency: Report of eight cases in six families. Blood 1980;56(2):251–5.CrossRefGoogle ScholarPubMed
Paglia, DE, Valentine, WN. Hereditary and acquired defects in the pyrimidine nucleotidase of human erythrocytes. Curr Top Hematol 1980;3:75109.Google Scholar
Paglia, DE, Valentine, WN, Keitt, AS, Brockway, RA, Nakatani, M. Pyrimidine nucleotidase deficiency with active dephosphorylation of dTMP: Evidence for existence of thymidine nucleotidase in human erythrocytes. Blood 1983;62(5):1147–9.Google Scholar
Taher, AT, Weatherall, DJ, Cappellini, MD. Thalassaemia. Lancet 2018;391(10116):155–67.Google Scholar
Vichinsky, E. Advances in the treatment of alpha-thalassemia. Blood Rev 2012;26 Suppl 1:S3134.Google Scholar
Piel, FB, Weatherall, DJ. The alpha-thalassemias. N Engl J Med 2014;371(20):1908–16.Google Scholar
Singh, SA, Sarangi, S, Appiah-Kubi, A, et al. Hb Adana (HBA2 or HBA1:c.179 G > A) and alpha thalassemia: Genotype-phenotype correlation. Pediatr Blood Cancer 2018;65(9):e27220.Google Scholar
Chui, DH, Waye, JS. Hydrops fetalis caused by alpha-thalassemia: An emerging health care problem. Blood 1998;91(7):2213–22.Google Scholar
Liang, ST, Wong, VC, So, WW, et al. Homozygous alpha-thalassaemia: Clinical presentation, diagnosis and management: A review of 46 cases. Br J Obstet Gynaecol 1985;92(7):680–4.CrossRefGoogle Scholar
Beaudry, MA, Ferguson, DJ, Pearse, K, et al. Survival of a hydropic infant with homozygous alpha-thalassemia-1. J Pediatr 1986;108(5 Pt 1):713–16.Google Scholar
Bianchi, DW, Beyer, EC, Stark, AR, et al. Normal long-term survival with alpha-thalassemia. J Pediatr 1986;108 (5 Pt 1):716–18.CrossRefGoogle ScholarPubMed
Singer, ST, Styles, L, Bojanowski, J, et al. Changing outcome of homozygous alpha-thalassemia:cautious optimism. J Pediatr Hematol Oncol 2000;22(6):539–42.Google Scholar
Chui, DH. Alpha-thalassemia: Hb H disease and Hb Barts hydrops fetalis. Ann N Y Acad Sci 2005;1054:2532.Google Scholar
Hsieh, FJ, Ko, TM, Chen, HY. Hydrops fetalis caused by severe alpha-thalassemia. Early Hum Dev 1992;29(1–3):233–6.Google Scholar
Guy, G, Coady, DJ, Jansen, V, Snyder, J, Zinberg, S. Alpha-thalassemia hydrops fetalis: Clinical and ultrasonographic considerations. Am J Obstet Gynecol 1985;153(5):500–4.Google Scholar
Stein, J, Berg, C, Jones, JA, Detter, JC. A screening protocol for a prenatal population at risk for inherited hemoglobin disorders: Results of its application to a group of Southeast Asians and blacks. Am J Obstet Gynecol 1984;150(4):333–41.Google Scholar
Glader, BE. Screening for anemia and erythrocyte disorders in children. Pediatrics 1986;78(2):368–9.Google Scholar
Chan, V, Ghosh, A, Chan, TK, Wong, V, Todd, D. Prenatal diagnosis of homozygous alpha thalassaemia by direct DNA analysis of uncultured amniotic fluid cells. Br Med J (Clin Res Ed) 1984;288(6427):1327–9.Google Scholar
Fucharoen, S, Winichagoon, P, Thonglairoam, V, et al. Prenatal diagnosis of thalassemia and hemoglobinopathies in Thailand: Experience from 100 pregnancies. Southeast Asian J Trop Med Public Health 1991;22(1):1629.Google ScholarPubMed
Hsieh, FJ, Chang, FM, Ko, TM, Chen, HY Percutaneous ultrasound-guided fetal blood sampling in the management of nonimmune hydrops fetalis. Am J Obstet Gynecol 1987;157(1):44–9.Google Scholar
Jelin, AC, Sagaser, KG, Wilkins-Haug, L. Prenatal genetic testing options. Pediatr Clin North Am 2019;66(2):281–93.Google Scholar
Winichagoon, P, Sithongdee, S, Kanokpongsakdi, S, et al. Noninvasive prenatal diagnosis for hemoglobin Bart’s hydrops fetalis. Int J Hematol 2005;81(5):396–9.CrossRefGoogle ScholarPubMed
Tungwiwat, W, Fucharoen, S, Fucharoen, G, Ratanasiri, T, Sanchaisuriya, K. Development and application of a real-time quantitative PCR for prenatal detection of fetal alpha(0)-thalassemia from maternal plasma. Ann N Y Acad Sci 2006;1075:103–7.Google Scholar
Ho, SS, Chong, SS, Koay, ES, et al. Noninvasive prenatal exclusion of haemoglobin Bart’s using foetal DNA from maternal plasma. Prenat Diagn 2009;30(1):6573.Google Scholar
Hudecova, I, Chiu, RW. Non-invasive prenatal diagnosis of thalassemias using maternal plasma cell free DNA. Best Pract Res Clin Obstet Gynaecol 2017;39:6373.Google Scholar
Yates, A. Prenatal Screening and Testing for Hemoglobinopathy (Philadelphia PA: Wolters Kluwer, 2019).Google Scholar
Chik, KW, Shing, MM, Li, CK, et al. Treatment of hemoglobin Bart’s hydrops with bone marrow transplantation. J Pediatr 1998;132(6):1039–42.Google Scholar
Thornley, I, Lehmann, L, Ferguson, WS, et al. Homozygous alpha-thalassemia treated with intrauterine transfusions and postnatal hematopoietic stem cell transplantation. Bone Marrow Transplant 2003;32(3):341–2.Google Scholar
Lucke, T, Pfister, S Durken, M. Neurodevelopmental outcome and haematological course of a long-time survivor with homozygous alpha-thalassaemia: Case report and review of the literature. Acta Paediatr 2005;94(9):1330–3.Google Scholar
Yi, JS, Moertel, CL, Baker, KS. Homozygous alpha-thalassemia treated with intrauterine transfusions and unrelated donor hematopoietic cell transplantation. J Pediatr 2009;154(5):766–8.Google Scholar
Derderian, SC, Jeanty, C, Walters, MC, Vichinsky, E, MacKenzie, TC. In utero hematopoietic cell transplantation for hemoglobinopathies. Front Pharmacol 2014;5:278.Google Scholar
Higgs, DR, Weatherall, DJ. The alpha thalassaemias. Cell Mol Life Sci 2009;66(7):1154–62.Google Scholar
Jomoui, W, Fucharoen, G, Sanchaisuriya, K, Nguyen, VH, Fucharoen, S. Hemoglobin Constant Spring among Southeast Asian populations: Haplotypic heterogeneities and phylogenetic analysis. PLoS One 2015;10(12):e0145230.Google Scholar
Sirilert, S, Charoenkwan, P, Sirichotiyakul, S, et al. Prenatal diagnosis and management of homozygous hemoglobin Constant Spring disease. J Perinatol 2019;39(7):927–33.Google Scholar
Olivieri, NF. The beta-thalassemias. N Engl J Med 1999;341(2):99109.Google Scholar
Cunningham, MJ, Sankaran, VG, Nathan, DG Orkin, SH. The thalassemias. In Orkin, SH, Nathan, DG, Ginsburg, D, et al., eds. Nathan and Oski’s Hematology of Infancy and Childhood (Philadelphia PA: Saunders/Elsevier,2009).Google Scholar
Cao, A, Rosatelli, MC, Monni, G, Galanello, R. Screening for thalassemia: A model of success. Obstet Gynecol Clin North Am 2002;29(2):305–28, vi–vii.Google Scholar
Olivieri, NF, Muraca, GM, O’Donnell, A, et al.Studies in haemoglobin E beta-thalassaemia. Br J Haematol 2008;141(3):388–97.Google Scholar
Sirichotiyakul, S, Saetung, R, Sanguansermsri, T. Prenatal diagnosis of beta-thalassemia/Hb E by hemoglobin typing compared to DNA analysis. Hemoglobin 2009;33(1):1723.Google Scholar
Vichinsky, EP, MacKlin, EA, Waye, J S, Lorey, F, Olivieri, NF. Changes in the epidemiology of thalassemia in North America: A new minority disease. Pediatrics 2005;116(6):e818825.Google Scholar
Lorey, F, Cunningham, G, Shafer, F, Lubin, B, Vichinsky, E. Universal screening for hemoglobinopathies using high-performance liquid chromatography: Clinical results of 2.2 million screens. Eur J Hum Genet 1994;2(4):262–71.Google Scholar
Lenfant, C. The Management of Sickle Cell Disease (Bethesda MD: National Insitutes of Health, 2002).Google Scholar
Gaston, MH, Verter, J I, Woods, G, et al. Prophylaxis with oral penicillin in children with sickle cell anemia. A randomized trial. N Engl J Med 1986;314(25):1593–99.Google Scholar
Michlitsch, J, Azimi, M, Hoppe, C, et al. Newborn screening for hemoglobinopathies in California. Pediatr Blood Cancer 2009;52(4):486–90.Google Scholar
Wethers, D, Pearson, HA, Gaston, M. Newborn screening for sickle cell disease and other hemoglobinopathies. Pediatrics 1989;89(5):813–14.Google Scholar
Koshy, M, Burd, L. Obstetric and gynecologic issues. In Embury, S, Hebbel, RP eds. Sickle Cell Disease: Basic Principles and Clinical Practice (New York: Raven Press, 1995), p. 689.Google Scholar
Villers, MS, Jamison, MG, De Castro, LM, James, AH. Morbidity associated with sickle cell disease in pregnancy. Am J Obstet Gynecol 2008;199(2):125,e121–5.Google Scholar
Williamson, D. The unstable haemoglobins. Blood Rev 1993;7(3):146–63.Google Scholar
Carrell, RW, Kay, R. A simple method for the detection of unstable haemoglobins. Br J Haematol 1972;23(5):615–19.Google Scholar
Lee-Potter, JP, Deacon-Smith, RA, Simpkiss, MJ, Kamuzora, H, Lehmann, H. A new cause of haemolytic anaemia in the newborn. A description of an unstable fetal haemoglobin: F Poole, alpha2-G-gamma2 130 tryptophan yields glycine. J Clin Pathol 1975;28(4):317–20.Google Scholar
Charache, S, Mondzac, AM, Gessner, U. Hemoglobin Hasharon (alpha-2–47 his(CD5;beta-2): A hemoglobin found in low concentration. J Clin Invest 1969;48(5):834–47.Google Scholar
Levine, RL, Lincoln, DR, Buchholz, WM, Gribble, TJ Schwartz, HC. Hemoglobin Hasharon in a premature infant with hemolytic anemia. Pediatric Research 1975;9(1):711.Google Scholar
Bender, JW, Reilly, MP Asakura, T. Molecular stability and function of hemoglobins Hasharon (alpha(2)47 (CD5)Asp–His beta 2) and Hasharon (alpha(2)47 (CD5)Asp–His delta 2). Hemoglobin 1984;8(1):6173.Google Scholar
Martin, H, Huisman, TH. Formation of ferrihaemoglobin of isolated human haemoglobin types by sodium nitrite. Nature 1963;200:898–9.Google Scholar
Bartos, HR, Desforges, JF. Erythrocyte DPNH dependent diaphorase levels in infants. Pediatrics 1966;37(6):991–3.CrossRefGoogle ScholarPubMed
Comly, HH. Cyanosis in infants caused by nitrates in well water. J Am Med Assoc 1945;129(2):112–16.Google Scholar
Gelperin, A, Jacobs, EE, Kletke, LS. The development of methemoglobin in mothers and newborn infants from nitrate in water supplies. IMJ Ill Med J 1971;140(1):42–4 passim.Google ScholarPubMed
Keating, JP, Lell, ME, Strauss, AW, Zarkowsky, H, Smith, GE. Infantile methemoglobinemia caused by carrot juice. N Engl J Med 1973;288(16):824–6.Google Scholar
Yano, SS, Danish, EH, Hsia, YE. Transient methemoglobinemia with acidosis in infants. J Pediatr 1982;100(3):415–18.Google Scholar
Avner, JR, Henretig, FM, McAneney, CM. Acquired methemoglobinemia: The relationship of cause to course of illness. Am J Dis Child 1990;144(11):1229–30.Google Scholar
Kay, MA, O’Brien, W, Kessler, B, et al. Transient organic aciduria and methemoglobinemia with acute gastroenteritis. Pediatrics 1990;85(4):589–92.Google Scholar
Pollack, ES, Pollack, CV, Jr. Incidence of subclinical methemoglobinemia in infants with diarrhea. Ann Emerg Med 1994;24(4):652–6.Google Scholar
Hanukoglu, A, Danon, PN. Endogenous methemoglobinemia associated with diarrheal disease in infancy. J Pediatr Gastroenterol Nutr 1996;23(1):17.Google Scholar
Wessel, DL, Adatia, I, Van Marter, LJ, et al. Improved oxygenation in a randomized trial of inhaled nitric oxide for persistent pulmonary hypertension of the newborn. Pediatrics 1997;100(5):E7.Google Scholar
Climie, CR, McLean, S, Starmer, GA, Thomas, J. Methaemoglobinaemia in mother and foetus following continuous epidural analgesia with prilocaine: Clinical and experimental data. Br J Anaesth 1967;39(2):155160.Google Scholar
Law, RM, Halpern, S, Martins, RF, et al. Measurement of methemoglobin after EMLA analgesia for newborn circumcision. Biol Neonate 1996;70(4):213–17.Google Scholar
Tush, GM, Kuhn, RJ. Methemoglobinemia induced by an over-the-counter medication. Ann Pharmacother 1996;30(11):1251–4.Google Scholar
Brisman, M, Ljung, BM, Otterbom, I, Larsson, LE, Andreasson, SE. Methaemoglobin formation after the use of EMLA cream in term neonates. Acta Paediatr 1998;87(11):1191–4.Google Scholar
Essink-Tebbes, CM, Wuis, EW, Liem, KD, van Dongen, RT, Hekster, YA. Safety of lidocaine-prilocaine cream application four times a day in premature neonates:a pilot study. Eur J Pediatr 1999;158(5):421–3.Google Scholar
Kearns, GL, Fiser, DH. Metoclopramide-induced methemoglobinemia. Pediatrics 1988;82(3):364–6.Google Scholar
Hjelt, K, Lund, JT, Scherling, B, et al. Methaemoglobinaemia among neonates in a neonatal intensive care unit. Acta Paediatr 1995;84(4):365–70.Google Scholar
Percy, MJ, McFerran, NV, Lappin, TR. Disorders of oxidised haemoglobin. Blood Rev 2005;19(2):61–8.Google Scholar
Percy, MJ, Lappin, TR. Recessive congenital methaemoglobinaemia: Cytochrome b(5; reductase deficiency. Br J Haematol 2008;141(3):298308.CrossRefGoogle ScholarPubMed
Kutlar, F, Hilliard, LM, Zhuang, L, et al. Hb M Dothan [beta 25/26 (B7/B8)/(GGT/GAG-->GAG//Gly/Glu-->Glu]; a new mechanism of unstable methemoglobin variant and molecular characteristics. Blood Cells Mol Dis 2009;43(3):235–8.Google Scholar
Hayashi, A, Fujita, T, Fujimura, M, Titani, K. A new abnormal fetal hemoglobin, Hb FM-Osaka (alpha 2 gamma 2 63His replaced by Tyr). Hemoglobin 1980;4(3–4):4478.Google Scholar
Glader, BE, Zwerdling, D, Kutlar, F, et al. Hb F-M-Osaka or alpha 2 G gamma 2 (63)(E7)His ----Tyr in a Caucasian male infant. Hemoglobin 1989;13(7–8):769–73.Google Scholar
Priest, JR, Watterson, J, Jones, RT, Faassen, AE, Hedlund, BE. Mutant fetal hemoglobin causing cyanosis in a newborn. Pediatrics 1989;83(5):734–6.Google Scholar
Harley, JD, Celermajer, JM. Neonatal methaemoglobinaemia and the red-brown screening-test. Lancet 1970;2(7685):1223–5.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×