Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T13:03:04.277Z Has data issue: false hasContentIssue false

Section 7 - Miscellaneous Lesions and Syndromes

Published online by Cambridge University Press:  09 September 2021

Laura K. Berenstain
Affiliation:
Cincinnati Children's Hospital Medical Center
James P. Spaeth
Affiliation:
Cincinnati Children's Hospital Medical Center
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Congenital Cardiac Anesthesia
A Case-based Approach
, pp. 305 - 392
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Abman, S. H., Hansmann, G., and Archer, S. L. Pediatric pulmonary hypertension: Guidelines from the American Heart Association and American Thoracic Society. Circulation 2015; 132: 2037–99.CrossRefGoogle ScholarPubMed
Friesen, R. H., Nichols, C. S., Twite, M. D., et al. The hemodynamic response to dexmedetomidine loading dose in children with and without pulmonary hypertension. Anesth Analg 2013; 117: 953–9.CrossRefGoogle ScholarPubMed
Friesen, R. H. and Williams, G. D. Anesthetic management of children with pulmonary arterial hypertension. Pediatr Anesth 2008; 18: 208–16. DOI: 10.1111/j.1460-9592.2008.02419.x.Google Scholar
Galie, N. and Simonneau, G. The Fifth World Symposium on Pulmonary Hypertension. J Am Coll Cardiol 2013; 62: D1D3.Google Scholar
Latham, G. J. and Yung, D. Current understanding and perioperative management of pediatric pulmonary hypertension. Pediatr Anesth 2019; 29: 441–56. DOI: 10.1111/pan.13542.CrossRefGoogle ScholarPubMed
Nathan, A. T., Nicolson, S. C., and McGowan, F. X. A word of caution: dexmedetomidine and pulmonary hypertension. Anesth Analg 2014; 119: 216–17.Google Scholar
Shah, S. and Szmuszkovicz, J. R. Pediatric perioperative pulmonary arterial hypertension: a case-based primer. Children 2017; 4: 92. DOI: 10.3390/children4100092.CrossRefGoogle ScholarPubMed
Twite, M. D. and Friesen, R. H. Anesthesia for pulmonary hypertension. In Andropoulos, D. B., Stayer, S., Mossad, E. B., et al. eds., Anesthesia for Congenital Heart Disease, 3rd ed. Hoboken, NJ: John Wiley & Sons, 2015; 661–76.Google Scholar

Suggested Reading

Adachi, I., Uemura, H., McCarthy, K. P., et al. Surgical anatomy of atrioventricular septal defect. Asian Cardiovasc Thorac Ann 2008; 16: 497502.CrossRefGoogle ScholarPubMed
Bush, D., Galambos, C., Ivy, D. D., et al. Clinical characteristics and risk factors for developing pulmonary hypertension in children with Down syndrome. J Pediatr 2018; 202: 212–19.CrossRefGoogle ScholarPubMed
Hansmann, G. and Apitz, C. Treatment of children with pulmonary hypertension. Expert consensus statement on the diagnosis and treatment of pediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK. Heart 2016; 102: ii67–ii85.Google ScholarPubMed
Shukla, A. C. and Almodovar, M. C. Anesthesia considerations for children with pulmonary hypertension. Pediatr Crit Care Med 2010; 11: S773.CrossRefGoogle ScholarPubMed
Twite, M. D. and Friesen, R. H. The anesthetic management of children with pulmonary hypertension in the cardiac catheterization laboratory. Anesthesiol Clin 2014; 23: 157–73.Google Scholar

Suggested Reading

Abman, S. H., Hansmann, G., Archer, S. L., et al. Pediatric pulmonary hypertension: guidelines from the American Heart Association and American Thoracic Society. Circulation 2015; 132: 2037–99.Google Scholar
Altit, G., Dancea, A., Renaud, C., et al. Pathophysiology, screening and diagnosis of pulmonary hypertension in infants with bronchopulmonary dysplasia – a review of the literature. Paediatr Respir Rev 2017; 23: 1626.Google Scholar
Berkelhamer, S. K., Mestan, K. K., and Steinhorn, R. An update on the diagnosis and management of bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension. Semin Perinatol 2018; 42: 432–43.CrossRefGoogle ScholarPubMed
Bernier, M. L., Jacob, A. I., Collaco, J. M., et al. Perioperative events in children with pulmonary hypertension undergoing non-cardiac procedures. Pulm Circ 2018; 8: 2045893217738143. DOI: 10.1177/2045893217738143.CrossRefGoogle ScholarPubMed
Hilgendorff, A., Apitz, C., Bonnet, D., et al. Pulmonary hypertension associated with acute or chronic lung disease in the preterm and term neonate and infant. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK. Heart 2016; 102: ii49–ii56.CrossRefGoogle ScholarPubMed
Krishnan, U., Feinstein, J. A., Adatia, I., et al. Evaluation and management of pulmonary hypertension in children with bronchopulmonary dysplasia. J Pediatr 2017; 188: 24–34.e1.Google Scholar
Latham, G. J. and Yung, D. Current understanding and perioperative management of pediatric pulmonary hypertension. Pediatr Anesth 2019; 29: 441–56. DOI: 10.1111/pan.13542.CrossRefGoogle ScholarPubMed
O’Connor, M. G., Cornfield, D. N., and Austin, E. D. Pulmonary hypertension in the premature infant: a challenging co-morbidity in a vulnerable population. Curr Opin Pediatr 2016; 28: 324–30.Google Scholar
O’Connor, M. G., Suther, D., Vera, K., et al. Pulmonary hypertension in the premature infant population: analysis of echocardiographic findings and biomarkers. Pediatr Pulmonol 2018; 53: 302309. DOI: 10.1002/ppul.23913.Google Scholar

Suggested Reading

Abman, S. H., Hansmann, G., Archer, S. L., et al. Pediatric pulmonary hypertension. Circulation 2015; 132: 2037–99.Google Scholar
Appireddy, R., Ranjan, M., Durafourt, B. A., et al. Surgery for moyamoya disease in children. J Child Neurol 2019; 088307381984485.CrossRefGoogle Scholar
Arlachov, Y. and Ganatra, R. H. Sedation/anaesthesia in paediatric radiology. Br J Radiol 2012; 85: e1018–31.Google Scholar
Del Cerro, M. J., Abman, S., Diaz, G., et al. A consensus approach to the classification of pediatric pulmonary hypertensive vascular disease: Report from the PVRI Pediatric Taskforce, Panama 2011. Pulm Circ 2011; 1: 286–98.CrossRefGoogle Scholar
Lammers, A. E., Adatia, I., Del Cerro, M. J., et al. Functional classification of pulmonary hypertension in children: Report from the PVRI Pediatric Taskforce, Panama 2011. Pulm Circ 2011; 1: 280–5.Google Scholar
Pritts, C. D. and Pearl, R. G. Anesthesia for patients with pulmonary hypertension. Curr Opin Anaesthesiol 2010; 23: 411–16.Google Scholar

References

Gross, R. E.. Surgical relief for tracheal obstruction from a vascular ring. N Engl J Med 1945; 233: 586–90.Google Scholar
Backer, C. L. and Mavroudis, C.. Vascular rings and pulmonary artery sling. In Mavroudis, C., Backer, C. L. eds. Pediatric Cardiac Surgery, 4th ed. Oxford: Wiley-Blackwell, 2013; 234–55.Google Scholar
Evans, W. N., Acherman, R. J., Ciccolo, M. L., et al. Vascular ring diagnosis and management: notable trends over 25 years. World J Pediatr Congenit Heart Surg 2016; 7: 717–20.CrossRefGoogle ScholarPubMed
Lowe, G. M., Donaldson, J. S., and Backer, C. L.. Vascular rings: 10-year review of imaging. Radiographics 1991; 11: 637–46.CrossRefGoogle ScholarPubMed
Kocis, K. C., Midgley, F. M., and Ruckman, R. N.. Aortic arch complex anomalies: 20-year experience with symptoms, diagnosis, associated cardiac defects, and surgical repair. Pediatr Cardiol 1997; 18: 127–32.CrossRefGoogle ScholarPubMed
Naimo, P. S., Fricke, T. A., Donald, J. S., et al. Long-term outcomes of complete vascular ring division in children: a 36-year experience from a single institution. Interact Cardiovasc Thorac Surg 2017; 24: 234–9.Google Scholar
Backer, C. L. and Mavroudis, C.. Congenital Heart Surgery Nomenclature and Database Project: patent ductus arteriosus, coarctation of the aorta, interrupted aortic arch. Ann Thorac Surg 2000; 69: S298307.CrossRefGoogle ScholarPubMed
Schleich, J. M.. Images in cardiology: development of the human heart – days 15–21. Heart 2002; 87: 487.CrossRefGoogle ScholarPubMed
Kussman, B. D., Geva, T., and McGowan, F. X.. Cardiovascular causes of airway compression. Paediatr Anaesth 2004; 14: 6074.Google Scholar
Hanneman, K., Newman, B., and Chan, F.. Congenital variants and anomalies of the aortic arch. Radiographics 2017; 37: 3251.CrossRefGoogle ScholarPubMed
Shah, R. K., Mora, B. N., Bacha, E., et al. The presentation and management of vascular rings: an otolaryngology perspective. Int J Pediatr Otorhinolaryngol 2007; 71: 5762.CrossRefGoogle ScholarPubMed
Loomba, R. S.. Natural history of asymptomatic and unrepaired vascular rings: is watchful waiting a viable option? A new case and review of previously reported cases. Children 2016; 3: 44.CrossRefGoogle ScholarPubMed
Berdon, W. E., Baker, D. H., Wung, J. T., et al. Complete cartilage-ring tracheal stenosis associated with anomalous left pulmonary artery: the ring-sling complex. Radiology 1984; 152: 5764.Google Scholar
Nguyen, L. T., Fleishman, R., Flynn, E., et al. 22q11.2 microduplication syndrome with associated esophageal atresia/tracheo-esophageal fistula and vascular ring. Clin Case Rep 2017; 5: 351–6.Google Scholar
Bonnard, A., Auber, F., Fourcade, L., et al. Vascular ring abnormalities: a retrospective study of 62 cases. J Pediatr Surg 2003; 38: 539–43.Google Scholar
Etesami, M., Ashwath, R., Kanne, J., et al. Computed tomography in the evaluation of vascular rings and slings. Insights Imaging 2014; 5: 507–21.Google Scholar
Kogon, B. E., Forbess, J. M., Wulkan, M. L., et al. Video-assisted thoracoscopic surgery: is it a superior technique for the division of vascular rings in children? Congenit Heart Dis 2007; 2: 130–3.Google Scholar
Luciano, D., Mitchell, J., Fraisse, A., et al. Kommerell diverticulum should be removed in children with vascular ring and aberrant left subclavian artery. Ann Thorac Surg 2015; 100: 2293–7.Google Scholar
Robbertze, R., Posner, K. L., and Domino, K. B.. Closed claims review of anesthesia for procedures outside the operating room. Curr Opin Anaesthesiol 2006; 19: 436–42.Google Scholar
Cravero, J. P., Beach, M. L., Blike, G. T., et al. The incidence and nature of adverse events during pediatric sedation/anesthesia with propofol for procedures outside the operating room: a report from the Pediatric Sedation Research Consortium. Anesth Analg 2009; 108: 795804.Google Scholar
Grunwell, J. R., Travers, C., McCracken, C. E., et al. Procedural sedation outside of the operating room using ketamine in 22,645 children: a report from the Pediatric Sedation Research Consortium. Pediatr Crit Care Med 2016; 17: 1109–16.Google Scholar
Lawlor, C., Smithers, C. J., Hamilton, T., et al. Innovative management of severe tracheobronchomalacia using anterior and posterior tracheobronchopexy. Laryngoscope 2019; 130: E6574.Google Scholar

Suggested Reading

Backer, C. L., Mavroudis, C., Rigsby, C. K., et al. Trends in vascular ring surgery. J Thorac Cardiovasc Surg 2005; 129: 1339–47.Google Scholar
Backer, C. L., Mongé, M. C., Popescu, A. R., et al. Vascular rings. Semin Pediatr Surg 2016; 25: 165–75.CrossRefGoogle ScholarPubMed
Hanneman, K., Newman, B., and Chan, F. Congenital variants and anomalies of the aortic arch. Radiographics 2017; 37: 3251.CrossRefGoogle ScholarPubMed
Herrin, M. A., Zurakowski, D., Fynn-Thompson, F., et al. Outcomes following thoracotomy or thoracoscopic vascular ring division in children and young adults. J Thorac Cardiovasc Surg 2017; 154: 607–15.Google Scholar
Kussman, B. D., Geva, T., and McGowan, F. X. Cardiovascular causes of airway compression. Paediatr Anaesth 2004; 14: 6074.Google Scholar
Priya, S., Thomas, R., Nagpal, P., et al. Congenital anomalies of the aortic arch. Cardiovasc Diagn Ther 2018; 8: S2644.Google Scholar

Suggested Reading

Adler, Y., Charron, P., Imazio, M., et al. ESC Guidelines for the diagnosis and management of pericardial diseases: the Task Force for the diagnosis and management of pericardial diseases of the European Society of Cardiology (ESC) endorsed by the European Association for Cardio-thoracic Surgery (EACTS). Eur Heart J 2015; 36: 2921–64.Google Scholar
Azarbal, A. and LeWinter, M. M. Pericardial effusion. Cardiol Clin 2017; 35: 515–24.CrossRefGoogle ScholarPubMed
Ceriani, E. and Cogliati, C. Update on bedside ultrasound diagnosis of pericardial effusion. Intern Emerg Med 2016; 11: 477–80.CrossRefGoogle ScholarPubMed
Lee, C. and Mason, L. J. Pediatric cardiac emergencies. Anesthesiol Clin North Am 2001; 19: 287308.CrossRefGoogle ScholarPubMed
Ozturk, E., Tanidir, I. C., Saygi, M., et al. Evaluation of non-surgical causes of cardiac tamponade in children at a cardiac surgery center. Pediatr Int 2014; 56: 1318.Google Scholar
Prez-Casares, A., Cesar, S., Brunet-Garcia, L., et al. Echocardiographic evaluation of pericardial effusion and cardiac tamponade. Front Pediatr 2017; 5: 79.Google Scholar
Rawlinson, E. and Bagshaw, O. Anesthesia for children with pericardial effusion: a case series. Paediatr Anaesth 2012; 22: 1124–31.Google Scholar
Vakamudi, S., Ho, N., and Cremer, P. C. Pericardial effusions: causes, diagnosis and management. Prog Cardiovasc Dis 2017; 59: 380–88.CrossRefGoogle ScholarPubMed

Suggested Reading

Daniels, L. B., Gordon, J. B., and Burns, J. C. Kawasaki disease: late cardiovascular sequelae. Curr Opin Cardiol 2012; 27: 572–7.Google Scholar
McCrindle, B. W., Rowley, A. H., Newburger, J. W., et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation 2017; 135: e927–99.CrossRefGoogle ScholarPubMed
Odegard, K. C., DiNardo, J. A., Tsai-Goodman, B., et al. Anaesthesia considerations for cardiac MRI in infants and small children. Paediatr Anaesth 2004; 14: 471–6.Google Scholar
Son, M. B. F. and Newburger, J. W. Kawasaki disease. Pediatr Rev 2018; 39: 7890.Google Scholar
Sosa, T., Brower, L., and Divanovic, A. Diagnosis and management of Kawasaki disease. JAMA Pediatr 2019; 173: 278–9.Google Scholar
To, L., Krazit, S. T., and Kaye, A. D. Perioperative considerations of Kawasaki disease. Ochsner J 2013; 13: 208–13.Google ScholarPubMed

References

Solomon, B.. VACTERL/VATER Association. Orphanet J Rare Dis 2011; 6: 56.Google Scholar
Spitz, L.. Esophageal atresia. Orphanet J Rare Dis 2007; 2: 24.Google Scholar
Diaz, L. K., Akpek, E. A., Dinavahi, R., et al. Tracheoesophageal fistula and associated congenital heart disease: implications for anesthetic management and survival. Paediatr Anaesth 2005; 10: 862–9.Google Scholar
Puri, K., Morris, S. A., Mery, C. M., et al. Characteristics and outcomes of children with ductal-dependent congenital heart disease and esophageal atresia/tracheoesophageal fistula: a multi-institutional analysis. Surgery 2018; 163: 847–53.Google Scholar
Lal, D.R., Gadepalli, S. K., Downard, C. D., et al. Infants with esophageal atresia and right aortic arch: characteristics and outcomes from the Midwest Pediatric Surgery Consortium. J Pediatr Surg 2018; 54: 688–92.Google Scholar
Taghavi, K. and Stringer, M D.. Preoperative laryngotracheobronchoscopy in infants with esophageal atresia: why is it not routine? Pediatr Surg Int 2018; 34: 37.Google Scholar
Atzori, P., Iacobelli, B. D., Bottero, S., et al. Preoperative tracheobronchoscopy in newborns with esophageal atresia: does it matter? J Pediatr Surg 2006; 41: 1054–7.Google Scholar
Loomba, R. S., Buelow, M. W., and Woods, R. K.. Complete repair of tetralogy of Fallot in neonatal versus non-neonatal period: a meta-analysis. Pediatr Cardiol 2017; 38: 893901.Google Scholar
Bentham, J. R., Zava, N. K., Harrison, W. J., et al. Duct stenting versus modified Blalock–Taussig shunt in neonates with duct-dependent pulmonary blood flow: associations with clinical outcomes in a multicenter national study. Circulation 2018; 137: 581–8.Google Scholar
Aggarwal, V., Petit, C. J., Glatz, A. C., et al. Stenting of the ductus arteriosus for ductal-dependent pulmonary blood flow: current techniques and procedural considerations. Congenit Heart Dis 2019; 14: 110–15.Google Scholar

Suggested Reading

Knottenbelt, G., Costi, D., Stephens, P., et al. An audit of anesthetic management and complications of tracheo-esophageal fistula and esophageal atresia repair. Pediatr Anesth 2011; 22: 268–74.Google Scholar
Lal, D. R., Gadepalli, S. K., Downard, C. D., et al. Perioperative management and outcomes of esophageal atresia and tracheoesophageal fistula. J Pediatr Surg 2017; 52: 1245–51.CrossRefGoogle ScholarPubMed
Puri, K., Morris, S. A., Mery, C. M., et al. Characteristics and outcomes of children with ductal-dependent congenital heart disease and esophageal atresia/tracheoesophageal fistula: a multi-institutional analysis. Surgery 2018; 163: 847–53.Google Scholar

Suggested Reading

Braunlin, E. A., Harmatz, P. R., Scarpa, M., et al. Cardiac disease in patients with mucopolysaccharidosis: presentation, diagnosis and management. J Inherit Metab Dis 2011; 34: 1183–97.Google Scholar
Burjek, N. E., Nishisaki, A., Fiadjoe, J. E., et al. Videolaryngoscopy versus fiber-optic intubation through a supraglottic airway in children with a difficult airway: an analysis from the multicenter Pediatric Difficult Intubation Registry. Anesthesiology 2017; 127: 432–40.CrossRefGoogle ScholarPubMed
Donaldson, M. D. C., Pennock, C. A., Berry, P. J., et al. Hurler syndrome with cardiomyopathy in infancy. J Pediatr 1989; 114: 430–2.Google Scholar
Fiadjoe, J. E., Nishisaki, A., Jagannathan, N., et al. Airway management complications in children with difficult tracheal intubation from the Pediatric Difficult Intubation (PeDI) registry: a prospective cohort analysis. Lancet Respir Med 2016; 4: 3748.Google Scholar
Kandil, A. I., Petit, C. S., Berry, L. N., et al. Tertiary pediatric academic institution’s experience with intraoperative neuromonitoring for nonspinal surgery in children with mucopolysaccharidosis, based on a novel evidence-based care algorithm. Anesth Analg 2019: DOI: 10.1213/ANE.000000000004215, PMID: 31082970.Google Scholar
Osthaus, W. A., Harendza, T., Witt, L. H., et al. Paediatric airway management in mucopolysaccharidosis 1: a retrospective case review. Eur J Anaesthesiol 2012; 29: 204–7.Google Scholar
Sawamoto, K., Stapleton, M., Almeciga-Diaz, C. J., et al. Therapeutic options for mucopolysaccharidoses: current and emerging treatments. Drugs 2019; 79: 1103–34.Google Scholar
Stapleton, M., Arunkumar, N., Kubaski, F., et al. Clinical presentation and diagnosis of mucopolysaccharidoses. Mol Genet Metab 2018; 125: 417.Google Scholar
Walker, R., Belani, K. G., Braunlin, E. A., et al. Anesthesia and airway management in mucopolysaccharidosis. J Inherit Metab Dis 2013; 36: 211–19.Google Scholar

References

Schwartz, P. J., Crotti, L., and Insolia, R.. Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol 2012; 5: 868–77.Google Scholar
Barsheshet, A., Dotshenko, O., and Goldenberg, I.. Genotype-specific risk stratification and management of patients with long QT syndrome. Ann Noninvasive Electrocardiol 2013; 18: 499509.Google Scholar
Ackerman, M. J., Priori, S. G., Willems, S., et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 2011; 10: e85108.Google Scholar
Priori, S. G., Wilde, A. A., Horie, M., et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, Paces and AEPC in June 2013. Heart Rhythm 2013; 10: 1932–63.Google Scholar
Giudicessi, J. R. and Ackerman, M. J.. Genotype- and phenotype-guided management of congenital long QT syndrome. Curr Probl Cardiol 2013; 38: 417–55.Google Scholar
Priori, S. G., Schwartz, P. J., Napolitano, C., et al. Risk stratification in the long-QT syndrome. N Engl J Med 2003; 348: 1866–74.Google Scholar
Ban, J-E. Neonatal arrhythmias: diagnosis, treatment, and clinical outcome. Korean J Pediatr 2017; 60: 344–52.Google Scholar
Schwartz, P. J. and Ackerman, M. J.. The long QT syndrome: a transatlantic clinical approach to diagnosis and therapy. Eur Heart J 2013; 34: 3109–16.Google Scholar
Kaufman, E. S., McNitt, S., Moss, A. J., et al. Risk of death in the long QT syndrome when a sibling has died. Heart Rhythm 2008; 5: 831–6.Google Scholar
Nguyen, H. L., Pieper, G. H., and Wilders, R.. Andersen-Tawil syndrome: clinical and molecular aspects. Int J Cardiol 2013; 170: 116.Google Scholar
Schwartz, P. J., Spazzolini, C., Priori, S. G., et al. Who are the long-QT syndrome patients who receive an implantable cardioverter-defibrillator and what happens to them? Data from the European Long-QT Syndrome Implantable Cardioverter-Defibrillator (LQTS ICD) Registry. Circulation 2010; 122: 1272–82.Google Scholar
Spazzolini, C., Mullaly, J., Moss, A. J., et al. Clinical implications for patients with long QT syndrome who experience a cardiac event during infancy. J Am Coll Cardiol 2009; 54: 832–7.CrossRefGoogle ScholarPubMed
Schneider, H. E., Steinmetz, M., Krause, U., et al. Left cardiac sympathetic denervation for the management of life-threatening ventricular tachyarrhythmias in young patients with catecholaminergic polymorphic ventricular tachycardia and long QT syndrome. Clin Res Cardiol 2013; 102: 3342.CrossRefGoogle ScholarPubMed
American Society of Anesthesiologists. Practice advisory for the perioperative management of patients with cardiac implantable electronic devices: pacemakers and implantable cardioverter-defibrillator: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Management of Patients with Cardiac Implantable Electronic Devices. Anesthesiology 2011; 114: 247–61.Google Scholar
Crossley, G. H., Poole, J. E., Rozner, M. A., et al. The Rhythm Society (HRS)/ American Society of Anesthesiologists (ASA) Expert Consensus Statement on the perioperative management of patients with implantable defibrillators, pacemakers and arrhythmia monitors: facilities and patient management: executive summary. Heart Rhythm 2011; 8: 1114.Google Scholar
Zareba, W., Moss, A. J., Daubert, J. P., et al. Implantable cardioverter defibrillator in high-risk long QT syndrome patients. J Cardiovasc Electrophysiol 2003; 14: 337–41.Google Scholar
Kies, S. J., Pabelick, C. M., Hurley, H. A., et al. Anesthesia for patients with congenital long QT syndrome. Anesthesiology 2005; 102: 204–10.CrossRefGoogle ScholarPubMed
Priori, S. G., Blomström-Lundqvist, C., Mazzanti, A., et al. Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death for the European Society of Cardiology. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Europace 2015; 17: 1601–87.Google Scholar
Staudt, G. E. and Watkins, S. C.. Anesthetic considerations for pediatric patients with congenital long QT syndrome. J Cardiothorac Vasc Anesth 2019; 33: 2030–8.Google Scholar
Hammer, G. B., Drover, D. R., Cao, H., et al. The effects of dexmedetomidine on cardiac electrophysiology in children. Anesth Analg 2008; 106: 7983.Google Scholar
Owczuk, R., Wujtewicz, M. A., Zienciuk-Krajka, A., et al. The influence of anesthesia on cardiac repolarization. Minerva Anesthesiol 2012; 78: 483–95.Google Scholar
Kumakura, M., Hara, K., and Sata, T.. Sevoflorane-associated torsade de pointes in a patient with congenital long QT syndrome genotype 2. J Clin Anesth 2016; 33: 81–5.Google Scholar
Naguib, M., Samarkandi, A. H., Bakhamees, H. S., et al. Histamine-release haemodynamic changes produced by rocuronium, vecuronium, mivacurium, atracurium and tubocurarine. Br J Anaesth 1995; 75: 588–92.CrossRefGoogle ScholarPubMed
de Kam, P-J, Grobara, P., Dennie, J., et al. Effect of sugammadex on QT/QTc interval prolongation when combined with QTc-prolonging sevoflurane or propofol anaesthesia. Clin Drug Invest 2013; 33: 545–51.Google Scholar
Odening, K. E., Koren, G., Hospital, R. I., et al. HHS public assess 2015; 11: 2107–15.Google Scholar
Shah, M. J.. Implantable cardioverter defibrillator-related complications in the pediatric population. Pacing Clin Electophysiol 2009; 32: S714.Google Scholar
Bernstein, A. D., Daubert, J-C, Fletcher, R. D., et al. NAPSE Position Statement. The revised NAPSE/BPEG generic code for antibradycardia, adaptive-rate, and multisite pacing. Pacing Clin Electophysiol 2002; 25: 2604.CrossRefGoogle Scholar
Cronin, B. and Essandoh, M. K.. Update on cardiovascular implantable electronic devices for anesthesiologists. J Cardiothorac Vasc Anes 2018; 32: 187184.Google Scholar

Suggested Reading

American Society of Anesthesiologists Task Force on Perioperative Management of Patients with Cardiac Implantable Electronic Devices. Practice advisory for the perioperative management of patients with cardiac implantable electronic devices: pacemakers and implantable cardioverter-defibrillators. An updated report. Anesthesiology 2011; 114: 247–61.Google Scholar
Cronin, B. and Essandoh, M. K. Update on cardiovascular implantable electronic devices for anesthesiologists. J Cardiothorac Vasc Anes 2018; 32: 1871–84.Google Scholar
Crossley, G. H., Poole, J. E., Rozner, M. A., et al. The Rhythm Society (HRS)/American Society of Anesthesiologists (ASA) Expert Consensus Statement on the Perioperative Management of Patients with Implantable Defibrillators, Pacemakers and Arrhythmia Monitors: Facilities and Patient Management: Executive Summary. Heart Rhythm 2011; 8: 1114.Google Scholar
Fazio, G., Vernuccio, F., Grutta, G., et al. Drugs to be avoided in patients with long QT syndrome: focus on the anaesthesiological management. World J Cardiol 2013; 26: 8793.Google Scholar
Navaratnam, M. and Dubin, A. Pediatric pacemakers and ICDs: how to optimize perioperative care. Pediatr Anesth 2011; 21: 512–21.Google Scholar
O’Hare, M., Maldonado, Y., Muro, J., et al. Perioperative management of patients with congenital or acquired disorder of the QT interval. BJA 2018; 120: 629–44.Google ScholarPubMed
Staudt, G. E. and Watkins, S. C. Anesthetic considerations for pediatric patients with congenital long QT syndrome. J Cardiothorac Vasc Anesth 2019; 33: 2030–8.Google Scholar

Suggested Reading

Ammash, N. M., Sundt, T. M., and Connolly, H. M. Marfan syndrome: diagnosis and management. Curr Probl Cardiol 2008; 33: 739.Google Scholar
Castellano, J. M., Silvay, G., and Castillo, J. G. Marfan syndrome: clinical, surgical, and anesthetic considerations. Semin Cardiothorac Vasc Anesth 2014; 18: 260–71.Google Scholar
Fraser, S., Child, A., and Hunt, I. Pectus updates and special considerations in Marfan syndrome. Pediatr Rep 2018; 9: 7277.Google Scholar
Mavi, J. and Moore, D. L. Anesthesia and analgesia for pectus excavatum surgery. Anesthesiol Clin 2014; 32: 175–84.Google Scholar
Nuss, D., Obermeyer, R. J., and Kelly, R. E. Nuss bar procedure: past, present and future. Ann Cardiothorac Surg 2016; 5: 422–33.CrossRefGoogle ScholarPubMed
Russo, V., Ranno, M., and Nigro, G. Cardiopulmonary resuscitation in pectus excavatum patients: is it time to say more? Resuscitation 2015; 88: e5e6.Google Scholar
Wilson, W., Taubert, K., Gewitz, M., et al. Prevention of infective endocarditis: Guidelines from the American Heart Association, by the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease. Circulation 2007; 116: 1736–54.Google Scholar
Wright, M. J. and Connolly, H. M. Management of Marfan syndrome and related disorders. UptoDate. 2018. www.uptodate.com/contents/management-of-marfan-syndrome-and-related-disorders (accessed July 4, 2019).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×