Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T11:23:51.271Z Has data issue: false hasContentIssue false

Chapter Twelve - Ecological–economic modelling for designing cost-effective incentives to conserve farmland biodiversity

from Part II - Integrating biodiversity and building resilience into agricultural systems

Published online by Cambridge University Press:  12 April 2019

Sarah M. Gardner
Affiliation:
GardnerLoboAssociates
Stephen J. Ramsden
Affiliation:
University of Nottingham
Rosemary S. Hails
Affiliation:
The National Trust
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Agricultural Resilience
Perspectives from Ecology and Economics
, pp. 253 - 272
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ando, A., Camm, J., Polasky, S. & Solow, A. (1998). Species distributions, land values and efficient conservation. Science, 279, 21262128.CrossRefGoogle ScholarPubMed
Armsworth, P.R., Acs, S., Dallimer, M., et al. (2012). The cost of policy simplification in conservation incentive programs. Ecology Letters, 15(5), 406414.CrossRefGoogle ScholarPubMed
Bamière, L., Havlíka, P., Jacqueta, F., et al. (2011). Farming system modelling for agri-environmental policy design: the case of a spatially non-aggregated allocation of conservation measures. Ecological Economics, 70(5), 891899.CrossRefGoogle Scholar
Bellows, T.S. (1981). The descriptive properties of some models for density dependence. Journal of Animal Ecology, 50, 139156.CrossRefGoogle Scholar
Benton, T.G., Vickery, J.A. & Wilson, J.D. (2003). Farmland biodiversity: is habitat heterogeneity the key? Trends in Ecology and Evolution, 18(4), 182188.CrossRefGoogle Scholar
Bommarco, R., Kleijn, D. & Potts, S.G. (2013). Ecological intensification: harnessing ecosystem services for food security. Trends in Ecology & Evolution, 28(4), 230238.CrossRefGoogle ScholarPubMed
Burton, R.J.F. & Schwarz, G. (2013). Result-oriented agri-environmental schemes in Europe and their potential for promoting behavioural change. Land Use Policy, 30, 628641.CrossRefGoogle Scholar
Caswell, H. (2001). Matrix Population Models: construction, analysis, and interpretation, 2nd edition. Sunderland, MA: Sinauer Associates.Google Scholar
Cong, R.-G., Smith, H.G., Olsson, O. & Brady, M. (2014). Managing ecosystem services for agriculture: will landscape-scale management pay? Ecological Economics, 99, 5362.CrossRefGoogle Scholar
Drechsler, M., Wätzold, F., Johst, K., Bergmann, H. & Settele, J. (2007a). A model-based approach for designing cost-effective compensation payments for conservation of endangered species in real landscapes. Biological Conservation, 140, 174186.CrossRefGoogle Scholar
Drechsler, M., Grimm, V., Mysiak, J. & Wätzold, F. (2007b). Differences and similarities between economic and ecological models for biodiversity conservation. Ecological Economics, 62(2), 232241.CrossRefGoogle Scholar
Drechsler, M., Johst, K., Wätzold, F. & Shogren, J. F. (2010). An agglomeration payment for cost-effective biodiversity conservation in spatially structured landscapes. Resource and Energy Economics, 32, 261275.CrossRefGoogle Scholar
Ekroos, J., Olsson, O., Rundlöf, M., Wätzold, F., & Smith, H.G. (2014). Optimizing agri-environment schemes for biodiversity, ecosystem services or both? Biological Conservation, 172, 6571.CrossRefGoogle Scholar
European Court of Auditors (2011). Is agri-environment support well designed and managed? Special Report No. 7/2011. Luxembourg: Publications Office of the European Union. http://eca.europa.eu/portal/pls/portal/docs/1/8760788.PDF.Google Scholar
Ferraro, P.J. (2008). Asymmetric information and contract design for payments for environmental services. Ecological Economics, 65, 810821.CrossRefGoogle Scholar
Finnoff, D. & Tschirhart, J. (2003). Harvesting in an eight-species ecosystem. Journal of Environmental Economics and Management, 45, 589611.CrossRefGoogle Scholar
Folke, C. (2006). Resilience: the emergence of a perspective for social–ecological systems analyses. Global Environmental Change, 16, 253267.CrossRefGoogle Scholar
Gerowitt, B., Isselstein, I. & Marggraf, R. (2003). Rewards for ecological goods – requirements and perspectives for agricultural land use. Agriculture, Ecosystems and Environment, 98, 541547.CrossRefGoogle Scholar
Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley.Google Scholar
Grimm, V. & Railsback, S.F. (2005). Individual-based Modelling and Ecology. Princeton, NJ: Princeton University Press,.CrossRefGoogle Scholar
Grimm, V., Berger, U., DeAngelis, D.L., et al. (2010). The ODD protocol: a review and first update. Ecological Modelling, 221, 27602768.CrossRefGoogle Scholar
Hampicke, U. (1991). Naturschutzökonomie. Stuttgart: Ulmer.Google Scholar
Hanski, I. (1999). Metapopulation Ecology. Oxford: Oxford University Press.CrossRefGoogle Scholar
Hare, M. & Deadman, P. (2004). Further towards a taxonomy of agent-based simulation models in environmental management. Mathematics and Computers in Simulation, 64, 2540.CrossRefGoogle Scholar
Johst, K., Drechsler, M. & Wätzold, F. (2002). An ecological–economic modelling procedure to design compensation payments for the efficient spatio-temporal allocation of species protection measures. Ecological Economics, 41, 3749.CrossRefGoogle Scholar
Johst, K., Drechsler, M., Thomas, J.A., & Settele, J. (2006). Influence of mowing on the persistence of two endangered Large Blue (Maculinea) butterfly species. Journal of Applied Ecology, 43, 333342.CrossRefGoogle Scholar
Johst, K., Drechsler, M., Mewes, M., Sturm, A. & Wätzold, F. (2015). A novel modelling approach to evaluate the ecological effects of timing and location of conservation measures in grassland at the landscape scale. Biological Conservation, 182, 4452.CrossRefGoogle Scholar
Kirkpatrick, S., Gelatt, C.D. & Vecchi, M.P. (1983). Optimization by simulated annealing. Science, 220(4598), 671680.CrossRefGoogle ScholarPubMed
Kleijn, D. & Sutherland, W.J. (2003). How effective are European agri-environment schemes in conserving and promoting biodiversity? Journal of Applied Ecology, 40, 947969.CrossRefGoogle Scholar
Kleijn, D., Rundlöf, M., Scheper, J., Smith, H.G. & Tscharntke, T. (2011). Does conservation on farmland contribute to halting the biodiversity decline? Trends in Ecology and Evolution, 26(9), 474–81.CrossRefGoogle ScholarPubMed
Kramer-Schadt, S., Revilla, E., Wiegand, T. & Breitenmoser, U. (2004). Fragmented landscapes, road mortality and patch connectivity: modelling dispersal for the Eurasian lynx in Germany. Journal of Applied Ecology, 41, 711723.CrossRefGoogle Scholar
Lundin, O., Smith, H., Rundlöf, M. & Bommarco, R. (2013). When ecosystem services interact: crop pollination benefits depend on the level of pest control. Proceedings of the Royal Society B, 280(1753), 2012.2243.CrossRefGoogle ScholarPubMed
Mewes, M., Sturm, A., Johst, K., Drechsler, M. & Wätzold, F. (2012). Handbuch der Software Ecopay zur Bestimmung kosteneffizienter Ausgleichzahlungen für Maßnahmen zum Schutz gefährdeter Arten und Lebensraumtypen im Grünland. 1/2012, -152. Leipzig, Helmholtz-Zentrum für Umweltforschung GmbH-UFZ. UFZ-Bericht.Google Scholar
Mewes, M., Drechsler, M., Johst, K., Sturm, A. & Wätzold, F. (2015). A systematic approach for assessing spatially and temporally differentiated opportunity costs of biodiversity conservation measures in grasslands. Agricultural Systems, 137, 7688.CrossRefGoogle Scholar
Nelson, E., Polasky, S., Lewis, D.J., et al. (2008). Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape. Proceedings of the National Academy of Sciences of the USA, 105, 94719476.CrossRefGoogle ScholarPubMed
Parkhurst, G.M., Shogren, J.F., Bastian, P., et al. (2002). Agglomeration bonus: an incentive mechanism to reunite fragmented habitat for biodiversity conservation. Ecological Economics, 41, 305328.CrossRefGoogle Scholar
Schrijver, A. (1998). Theory of Linear and Integer Programming. Chichester: John Wiley and Sons.Google Scholar
Tscharntke, T., Clough, Y., Wanger, T.C., et al. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151, 5159.CrossRefGoogle Scholar
Voříšek, P., Jiguet, F., van Strien, A., et al. (2010). Trends in abundance and biomass of widespread European farmland birds: how much have we lost? BOU Proceedings – Lowland Farmland Birds III (www.bou.org.uk/bouproc-net/lfb3/vorisek-etal.pdf).Google Scholar
Vos, C.C., Berry, P., Opdam, P., et al. (2008). Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. Journal of Applied Ecology, 45, 17221731.CrossRefGoogle Scholar
Wätzold, F. & Drechsler, M. (2014). Agglomeration payment, agglomeration bonus or homogeneous payment? Resource and Energy Economics, 37, 85101.CrossRefGoogle Scholar
Wätzold, F. & Schwerdtner, K. (2005). Why be wasteful when preserving a valuable resource? A review article on the cost-effectiveness of European conservation policy. Biological Conservation, 123, 327338.CrossRefGoogle Scholar
Wätzold, F., Drechsler, M., Armstrong, C.W., et al. (2006). Ecological–economic modeling for biodiversity management: potential, pitfalls, prospects. Conservation Biology, 20(4), 10341041.CrossRefGoogle ScholarPubMed
Wätzold, F., Drechsler, M., Johst, K., Mewes, M. & Sturm, A. (2016). A novel, spatiotemporally explicit ecological–economic modeling procedure for the design of cost-effective agri-environment schemes to conserve biodiversity. American Journal of Agricultural Economics, 98(2), 489512.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×