Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T15:49:31.908Z Has data issue: false hasContentIssue false

2 - Influence of climate variability and large-scale circulation on the mountain cryosphere

from Part I - Global drivers

Published online by Cambridge University Press:  05 September 2015

Christian Huggel
Affiliation:
Universität Zürich
Mark Carey
Affiliation:
University of Oregon
John J. Clague
Affiliation:
Simon Fraser University, British Columbia
Andreas Kääb
Affiliation:
Universitetet i Oslo
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The High-Mountain Cryosphere
Environmental Changes and Human Risks
, pp. 9 - 27
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nesje, A, Bakke, J, Dahl, SO, Lie, Ø, Matthews, JA. Norwegian mountain glaciers in the past, present and future. Global and Planetary Change 2008;60(1):1027.CrossRefGoogle Scholar
Hurrell, JW. Decadal trends in the North Atlantic Oscillation. Science 1995;269:676679.CrossRefGoogle ScholarPubMed
Imhof, P, Nesje, A, Nussbaumer, SU. Climate and glacier fluctuations at Jostedalsbreen and Folgefonna, southwestern Norway and in the western Alps from the ‘Little Ice Age’ until the present: the influence of the North Atlantic Oscillation. The Holocene 2012;22(2):235247.CrossRefGoogle Scholar
López-Moreno, J, Vicente-Serrano, S, Morán-Tejeda, E, Lorenzo-Lacruz, J, Kenawy, A, Beniston, M. Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: observed relationships and projections for the 21st century. Global and Planetary Change 2011;77(1):6276.CrossRefGoogle Scholar
Scherrer, SC, Appenzeller, C. Swiss Alpine snow pack variability: major patterns and links to local climate and large-scale flow. Climate Research 2006;32(3):187199.CrossRefGoogle Scholar
IPCC. Annex I: atlas of global and regional climate projections. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V and Midgley, PM (eds). Cambridge and New York: Cambridge University Press; 2013.Google Scholar
Jylhä, K, Tuomenvirta, H, Ruosteenoja, K. Climate change projections for Finland during the 21st century. Boreal Environment Research 2004;9(2):127152.Google Scholar
Nesje, A, Jansen, E, Birks, HJB, Bjune, AE, Bakke, J, Andersson, C, et al. Holocene climate variability in the northern North Atlantic region: a review of terrestrial and marine evidence. Geophysical Monograph Series 2005;158:289322.Google Scholar
Nesje, A, Lie, Ø, Dahl, SO. Is the North Atlantic Oscillation reflected in Scandinavian glacier mass balance records? Journal of Quaternary Science 2000;15(6):587601.3.0.CO;2-2>CrossRefGoogle Scholar
Laternser, M, Schneebeli, M. Long-term snow climate trends of the Swiss Alps (1931–99). International Journal of Climatology 2003;23(7):733750.CrossRefGoogle Scholar
Beniston, M. Variations of snow depth and duration in the Swiss Alps over the last 50 years: links to changes in large-scale climatic forcings. Climatic Change. 1997;36(3–4):281300.CrossRefGoogle Scholar
Cayan, DR. Interannual climate variability and snowpack in the western United States. Journal of Climate 1996;9(5):928948.2.0.CO;2>CrossRefGoogle Scholar
Bitz, C, Battisti, D. Interannual to decadal variability in climate and the glacier mass balance in Washington, western Canada, and Alaska. Journal of Climate 1999;12(11):31813196.2.0.CO;2>CrossRefGoogle Scholar
Moore, RD, McKendry, IG. Spring snowpack anomaly patterns and winter climatic variability, British Columbia, Canada. Water Resources Research 1996;32(3):623632.CrossRefGoogle Scholar
Alexander, MA. Extratropical air–sea interaction, SST variability, and the Pacific decadal oscillation (PDO). In: Climate Dynamics: Why Does Climate Vary, Sun, D, Bryan, F (eds). Washington, DC: American Geophysical Union; 2010. pp. 123148.CrossRefGoogle Scholar
Newman, M, Compo, GP, Alexander, MA. ENSO-forced variability of the Pacific Decadal Oscillation. Journal of Climate 2003;16(23):38533857.2.0.CO;2>CrossRefGoogle Scholar
Flato, G, Marotzke, J, Abiodun, B, Braconnot, P, Chou, S, Collins, W, et al. Evaluation of climate models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, TF, Qin, D, Plattner, GK, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V, Midgley, PM (eds). Cambridge and New York: Cambridge University Press; 2013.Google Scholar
Hunter, T, Tootle, G, Piechota, T. Oceanic–atmospheric variability and western U.S. snowfall. Geophysical Research Letters 2006;33:L13706.CrossRefGoogle Scholar
Nowak, K, Hoerling, M, Rajagopalan, B, Zagona, E. Colorado river basin hydroclimatic variability. Journal of Climate 2012;25(12):43894403.CrossRefGoogle Scholar
Schubert, S, Gutzler, D, Wang, H, Dai, A, Delworth, T, Deser, C, et al. A US CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: overview and results. Journal of Climate 2009;22(19):52515272.CrossRefGoogle Scholar
McCabe, GJ, Dettinger, MD. Primary modes and predictability of year-to-year snowpack variations in the western United States from teleconnections with Pacific Ocean climate. Journal of Hydrometeorology 2002;3(1):1325.2.0.CO;2>CrossRefGoogle Scholar
Mantua, NJ, Hare, SR. The Pacific decadal oscillation. Journal of Oceanography. 2002;58(1):3544.CrossRefGoogle Scholar
Timilsena, J, Piechota, T, Tootle, G, Singh, A. Associations of interdecadal/interannual climate variability and long-term Colorado River basin streamflow. Journal of Hydrology 2009;365(3–4):289301.CrossRefGoogle Scholar
Zhang, R, Delworth, TL, Held, IM. Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophysical Research Letters 2007;34:L02709.Google Scholar
Aizen, V, Aizen, E, Melack, J, Martma, T. Isotopic measurements of precipitation on central Asian glaciers (southeastern Tibet, northern Himalayas, central Tien Shan). Journal of Geophysical Research: Atmospheres (1984–2012) 1996;101(D4):91859196.CrossRefGoogle Scholar
Oberhänsli, H, Novotná, K, Píšková, A, Chabrillat, S, Nourgaliev, DK, Kurbaniyazov, AK, et al. Variability in precipitation, temperature and river runoff in W Central Asia during the past ~2000yrs. Global and Planetary Change 2011;76(1):95104.CrossRefGoogle Scholar
Dimri, A. Sub-seasonal interannual variability associated with the excess and deficit Indian winter monsoon over the Western Himalayas. Climate Dynamics 2013:113.Google Scholar
Torrence, C, Webster, PJ. The annual cycle of persistence in the El Nño/Southern Oscillation. Quarterly Journal of the Royal Meteorological Society. 1998;124(550):19852004.Google Scholar
Webster, PJ. The annual cycle and the predictability of the tropical coupled ocean–atmosphere system. Meteorology and Atmospheric Physics 1995;56(1–2):3355.CrossRefGoogle Scholar
Kumar, KK, Rajagopalan, B, Hoerling, M, Bates, G, Cane, M. Unraveling the mystery of Indian monsoon failure during El Niño. Science 2006;314(5796):115119.CrossRefGoogle ScholarPubMed
Paeth, H, Scholten, A, Friederichs, P, Hense, A. Uncertainties in climate change prediction: El Niño–Southern Oscillation and monsoons. Global and Planetary Change 2008;60(3):265288.CrossRefGoogle Scholar
Ramanathan, V, Carmichael, G. Global and regional climate changes due to black carbon. Nature Geoscience 2008;1(4):221227.CrossRefGoogle Scholar
Lau, K, Kim, M, Kim, K. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Climate Dynamics 2006;26(7–8):855864.CrossRefGoogle Scholar
Xu, B, Cao, J, Hansen, J, Yao, T, Joswia, DR, Wang, N, et al. Black soot and the survival of Tibetan glaciers. Proceedings of the National Academy of Sciences 2009;106(52):2211422118.CrossRefGoogle ScholarPubMed
Braun, C, Bezada, M. The history and disappearance of glaciers in Venezuela. Journal of Latin American Geography 2013;12(2):85124.CrossRefGoogle Scholar
Garreaud, R, Vuille, M, Clement, AC. The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology 2003;194(1):522.CrossRefGoogle Scholar
Francou, B, Vuille, M, Favier, V, Cáceres, B. New evidence for an ENSO impact on low-latitude glaciers: Antizana 15, Andes of Ecuador, 0 28′ S. Journal of Geophysical Research: Atmospheres (1984–2012) 2004;109:D18106.CrossRefGoogle Scholar
Vuille, M, Kaser, G, Juen, I. Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and the large-scale circulation. Global and Planetary Change 2008;62(1):1428.CrossRefGoogle Scholar
Garreaud, R, Aceituno, P. Interannual rainfall variability over the South American Altiplano. Journal of Climate. 2001;14(12):27792789.2.0.CO;2>CrossRefGoogle Scholar
Vuille, M, Bradley, RS, Keimig, F. Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research: Atmospheres (1984–2012) 2000;105(D10):1244712460.CrossRefGoogle Scholar
Wagnon, P, Ribstein, P, Francou, B, Sicart, J-E. Anomalous heat and mass budget of Glaciar Zongo, Bolivia, during the 1997/98 El Niño year. Journal of Glaciology 2001;47(156):2128.CrossRefGoogle Scholar
Kayano, MT, Capistrano, VB. How the Atlantic multidecadal oscillation (AMO) modifies the ENSO influence on the South American rainfall. International Journal of Climatology 2014;34(1):162178.CrossRefGoogle Scholar
Chiessi, CM, Mulitza, S, Pätzold, J, Wefer, G, Marengo, JA. Possible impact of the Atlantic Multidecadal Oscillation on the South American summer monsoon. Geophysical Research Letters 2009;36(21). DOI: 10.1029/2009GL039914CrossRefGoogle Scholar
Garreaud, RD, Vuille, M, Compagnucci, R, Marengo, J. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology. 2009;281(3):180195.CrossRefGoogle Scholar
Vuille, M, Francou, B, Wagnon, P, Juen, I, Kaser, G, Mark, BG, et al. Climate change and tropical Andean glaciers: past, present and future. Earth-Science Reviews 2008;89(3):7996.CrossRefGoogle Scholar
Vuille, M, Bradley, RS, Werner, M, Keimig, F. 20th century climate change in the tropical Andes: Observations and model results. Climatic Change 2003;59(1–2):7599.CrossRefGoogle Scholar
Rabatel, A, Francou, B, Soruco, A, Gomez, J, Cáceres, B, Ceballos, J, et al. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 2013;7(1):81102.CrossRefGoogle Scholar
Soruco, A, Vincent, C, Francou, B, Gonzalez, JF. Glacier decline between 1963 and 2006 in the Cordillera Real, Bolivia. Geophysical Research Letters. 2009;36:L03502.CrossRefGoogle Scholar
Ramirez, E, Francou, B, Ribstein, P, Descloitres, M, Guerin, R, Mendoza, J, et al. Small glaciers disappearing in the tropical Andes: a case-study in Bolivia – Glaciar Chacaltaya (16 S). Journal of Glaciology 2001;47(157):187194.CrossRefGoogle Scholar
Cooley, WD. Letter to the editor (on Kilimanjaro). Athenaeum. 1849;1125:516517.Google Scholar
Røhr, PC, Killingtveit, Å. Rainfall distribution on the slopes of Mt. Kilimanjaro. Hydrological Sciences Journal 2003;48(1):6577.CrossRefGoogle Scholar
Thompson, LG, Mosley-Thompson, E, Davis, ME, Henderson, KA, Brecher, HH, Zagorodnov, VS, et al. Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science 2002;298(5593):589593.CrossRefGoogle ScholarPubMed
Cullen, N, Sirguey, P, Mölg, T, Kaser, G, Winkler, M, Fitzsimons, S. A century of ice retreat on Kilimanjaro: the mapping reloaded. Cryosphere 2013;7(2):419431.CrossRefGoogle Scholar
Oerlemans, J. Glaciers and Climate Change. Lisse , PA: A.A. Balkema Publishers; 2001.Google Scholar
Mölg, T, Chiang, JC, Gohm, A, Cullen, NJ. Temporal precipitation variability versus altitude on a tropical high mountain: observations and mesoscale atmospheric modelling. Quarterly Journal of the Royal Meteorological Society. 2009;135(643):14391455.CrossRefGoogle Scholar
Mölg, T, Renold, M, Vuille, M, Cullen, NJ, Stocker, TF, Kaser, G. Indian Ocean zonal mode activity in a multicentury integration of a coupled AOGCM consistent with climate proxy data. Geophysical Research Letters 2006;33:L18710.CrossRefGoogle Scholar
Kaser, G, Mölg, T, Cullen, NJ, Hardy, DR, Winkler, M. Is the decline of ice on Kilimanjaro unprecedented in the Holocene? The Holocene 2010;20(7):10791091.CrossRefGoogle Scholar
Latif, M, Dommenget, D, Dima, M, Grötzner, A. The role of Indian Ocean sea surface temperature in forcing east African rainfall anomalies during December–January 1997/98. Journal of Climate 1999;12(12):34973504.2.0.CO;2>CrossRefGoogle Scholar
Fairman, JG, Nair, US, Christopher, SA, Mölg, T. Land use change impacts on regional climate over Kilimanjaro. Journal of Geophysical Research: Atmospheres (1984–2012) 2011;116:D03110.CrossRefGoogle Scholar
Pepin, N, Duane, W, Hardy, D. The montane circulation on Kilimanjaro, Tanzania and its relevance for the summit ice fields: comparison of surface mountain climate with equivalent reanalysis parameters. Global and Planetary Change 2010;74(2):6175.CrossRefGoogle Scholar
Cai, W, Borlace, S, Lengaigne, M, van Rensch, P, Collins, M, Vecchi, G, et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change 2014;4:111116.CrossRefGoogle Scholar
Hawkins, E, Sutton, R. Time of emergence of climate signals. Geophysical Research Letters 2012;39(1). DOI: 10.1029/2011GL050087CrossRefGoogle Scholar
Francis, JA, Vavrus, SJ. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters 2012;39:L06801.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×