Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T13:21:05.981Z Has data issue: false hasContentIssue false

3 - “Next-Gen” Tracking in Primatology

Opportunities and Challenges

from Part I - GPS for Primatologists

Published online by Cambridge University Press:  29 January 2021

Francine L. Dolins
Affiliation:
University of Michigan, Dearborn
Christopher A. Shaffer
Affiliation:
Grand Valley State University, Michigan
Leila M. Porter
Affiliation:
Northern Illinois University
Jena R. Hickey
Affiliation:
University of Georgia
Nathan P. Nibbelink
Affiliation:
University of Georgia
Get access

Summary

Why would you ever want to rely on electronic sensors when you can collect rich data like these by watching wild primates as they go about their daily lives? Compared to other mammalian species, primates are quite amenable to observational study; most species are diurnal and habituate quickly to the presence of human observers, allowing researchers to directly record data on their behaviors, movements, and interactions. Because, as primatologists, we can directly observe the behavior of our study animals in their natural habitats, we have never relied as heavily on telemetry (i.e., remote data collection) as scientists studying the behavior and ecology of other wild animals. Thus, before launching into specifics about how to GPS-track primates, it is worth asking why (or when) it would ever be worth the expense and the risk (to both the health of the study animal and the researcher) to catch and tag a primate with an electronic monitoring device. There are at least four distinct answers to this question.

Type
Chapter
Information
Spatial Analysis in Field Primatology
Applying GIS at Varying Scales
, pp. 42 - 63
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernethy, K. A., White, L. J. T., and Wickings, E. J. 2002. Hordes of mandrills (Mandrillus sphinx): extreme group size and seasonal male presence. Journal of Zoology 258: 131137.Google Scholar
Adams, A. L., Dickinson, K. J. M., Robertson, B. C., and van Heezik, Y. 2013. An evaluation of the accuracy and performance of lightweight GPS collars in a suburban environment. PLoS ONE 8. DOI: 10.1371/journal.pone.0068496.Google Scholar
Adelman, J. S., Moyers, S. C., and Hawley, D. M. 2014. Using remote biomonitoring to understand heterogeneity in immune-responses and disease-dynamics in small, free-living animals. Integrative and Comparative Biology 54: 377386.Google Scholar
Alexander, R. D. 1974. The evolution of social behavior. Annual Review of Ecology and Systematics 5: 325383.CrossRefGoogle Scholar
Arseneau, T. J. M., Taucher, A.-L., van Schaik, C. P., and Willems, E. P. 2015. Male monkeys fight in between-group conflicts as protective parents and reluctant recruits. Animal Behaviour 110: 3950.Google Scholar
Bowles, S. 2009. Did warfare among ancestral hunter-gatherers affect the evolution of human social behaviors? Science 324: 12931298.Google Scholar
Breed, G. A., Costa, D. P., Goebel, M. E., and Robinson, P. W. 2011. Electronic tracking tag programming is critical to data collection for behavioral time-series analysis. Ecosphere 2. DOI: 10.1890/ES10-00021.1.Google Scholar
Bridge, E. S., Thorup, K., Bowlin, M. S., et al. 2011. Technology on the move: recent and forthcoming innovations for tracking migratory birds. BioScience 61: 689698.Google Scholar
Brown, D., LaPoint, S., Kays, R., et al. 2012. Accelerometer-informed GPS telemetry: reducing the trade-off between resolution and longevity. Wildlife Society Bulletin 36: 139146.CrossRefGoogle Scholar
Brown, D., Kays, R., Wikelski, M., Wilson, R., and Klimley, A. 2013. Observing the unwatchable through acceleration logging of animal behavior. Animal Biotelemetry 1: 116.Google Scholar
Brown, M. and Crofoot, M. C. 2013. Social and spatial relationships between primate groups. Pages 151176 in Primate Ecology and Conservation: A Handbook of Techniques. Sterling, E. J., Bynum, N., and Blair, M. E. (Eds.). Oxford University Press, Oxford.Google Scholar
Burger, A. E. and Shaffer, S. A. 2008. Application of tracking and data-logging technology in research and conservation of seabirds. Auk 125: 253264.Google Scholar
Byrne, R. W. 2000. How monkeys find their way: leadership, coordination, and cognitive maps of African baboons. Pages 491518 in On the Move: How and Why Animals Travel in Groups. Boinski, S. and Garber, P.. Chicago University Press, Chicago, IL.Google Scholar
Cain, J. W., Krausman, P. R., Jansen, B. D., and Morgart, J. R. 2005. Influence of topography and GPS fix interval on GPS collar performance. Wildlife Society Bulletin 33: 926934.Google Scholar
Caine, N. G. 1989. Unrecognized anti-predator behaviour can bias observational data. Animal Behaviour 39: 195197.Google Scholar
Campbell, A. F. and Sussman, R. W. 1994. The value of radio tracking in the study of neotropical rain-forest monkeys. American Journal of Primatology 32: 291301.Google Scholar
Campbell, C. J., Crofoot, M. C., MacKinnon, J. R., and Stumpf, R. 2011. Behavioral data collection in primate field studies. Pages 358367 in Primates in Perspective. Stumpf, R., Campbell, C. J., Fuentes, A., MacKinnon, J. R., and Bearder, S. K. (Eds.). Oxford University Press, Oxford.Google Scholar
Cargnelutti, B., Coulon, A., Hewison, A. J. M., et al. 2007. Testing global positioning system performance for wildlife monitoring using mobile collars and known reference points. Journal of Wildlife Management 71: 13801387.Google Scholar
Carpenter, C. R. 1934. A field study of the behavioral and social relations of howling monkeys (Alouatta palliata). Comparative Psychology Monographs 10: 1168.Google Scholar
Charles Dominique, P. 1977. Urine marking and territoriality in Galago alleni: field-study by radio-telemetry. Zeitschrift Fur Tierpsychologie – Journal of Comparative Ethology 43: 113138.Google Scholar
Cheney, D. L. 1987. Interactions and relations between groups. Pages 267281 in Primate Societies. Smuts, B. B., Cheney, D. L., Seyfarth, R. M., et al. (Eds.). University of Chicago Press, Chicago, IL.Google Scholar
Conradt, L. and Roper, T. J. 2003. Group decision-making in animals. Nature 421: 155158.Google Scholar
Conradt, L. and Roper, T. J. 2010. Deciding group movements: where and when to go. Behavioural Processes 84: 675677.Google Scholar
Conradt, L., Krause, J., Couzin, I. D., and Roper, T. J. 2009. Leading according to need in self-organizing groups. American Naturalist 173: 304312.Google Scholar
Couzin, I. D., Krause, J., Franks, N. R., and Levin, S. A. 2005. Effective leadership and decision-making in animal groups on the move. Nature 433: 513516.Google Scholar
Crofoot, M. C. 2007. Mating and feeding competition in white-faced capuchins (Cebus capucinus): the importance of short- and long-term strategies. Behaviour 144: 14731495.Google Scholar
Crofoot, M. C. 2008. Intergroup Competition in White-Faced Capuchin Monkeys (Cebus capucinus): Automated Radio-Telemetry Reveals How Intergroup Relationships Shape Space-Use and Foraging Success. Harvard University, Cambridge, MA.Google Scholar
Crofoot, M. C. 2013. The cost of defeat: capuchin groups travel further, faster and later after losing conflicts with neighbors. American Journal of Physical Anthropology 152: 7985.Google Scholar
Crofoot, M. C. and Wrangham, R. W. 2010. Intergroup aggression in primates and humans: the case for a unified theory. Pages 171195 in Mind the Gap. Kappeler, P. M. and Silk, J. (Eds.). Springer, New York.Google Scholar
Crofoot, M. C., Gilby, I. C., Wikelski, M. C., and Kays, R. W. 2008. Interaction location outweighs the competitive advantage of numerical superiority in Cebus capucinus intergroup contests. Proceedings of the National Academy of Sciences of the United States of America 105: 577581.Google Scholar
Crofoot, M. C., Lambert, T. D., Kays, R., and Wikelski, M. C. 2010. Does watching a monkey change its behaviour? Quantifying observer effects in habituated wild primates using automated radiotelemetry. Animal Behaviour 80: 475480.Google Scholar
Crofoot, M. C., Kays, R. W., and Wikelski, M. 2015. Shared decision-making drives collective movement in wild baboons. Movebank data repository.Google Scholar
Davies, A., Radford, A., and Nicol, C. 2014. Behavioural and physiological expression of arousal during decision-making in laying hens. Physiology & Behavior 123: 9399.Google Scholar
D’Eon, R. G. and Delparte, D. 2005. Effects of radio-collar position and orientation on GPS radio-collar performance, and the implications of PDOP in data screening. Journal of Applied Ecology 42: 383388.Google Scholar
D’Eon, R. G., Serrouya, R., Smith, G., and Kochanny, C. O. 2002. GPS radiotelemetry error and bias in mountainous terrain. Wildlife Society Bulletin 30: 430439.Google Scholar
Fairbanks, L. A. and Pereira, M. E. 2002. Juvenile primates: dimensions for future research. Pages 359366 in Juvenile Primates: Life History, Development and Behavior. Pereira, M. E. and Fairbanks, L. A. (Eds.). University of Chicago Press, Chicago, IL.Google Scholar
Farine, D. R., Strandburg-Peshkin, A., Berger-Wolf, T., et al. 2016. Both nearest neighbours and long-term affiliates predict individual locations during collective movement in wild baboons. Scientific Reports 6: 27704.Google Scholar
Flack, A., Ákos, Z., Nagy, M., Vicsek, T., and Biro, D. 2013. Robustness of flight leadership relations in pigeons. Animal Behaviour 86: 723732.Google Scholar
Flack, A., Fiedler, W., Blas, J., et al. 2016. Costs of migratory decisions: a comparison across eight white stork populations. Science Advances 2: e1500931.Google Scholar
Frair, J. L., Fieberg, J., Hebblewhite, M., et al. 2010. Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 21872200.Google Scholar
Fuentes, A., Klegarth, A., Jones-Engel, L., et al. 2014. “Seeing the world through their eyes”: analyses of the first National Geographic Crittercam (TM) deployments on macaques in Singapore and Gibraltar. American Journal of Physical Anthropology 153: 122.Google Scholar
Gau, R. J., Mulders, R., Ciarniello, L. J., et al. 2004. Uncontrolled field performance of Televilt GPS-Simplex (TM) collars on grizzly bears in western and northern Canada. Wildlife Society Bulletin 32: 693701.Google Scholar
Gleiss, A. C., Wilson, R. P., and Shepard, E. L. C. 2011. Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure. Methods in Ecology and Evolution 2: 2333.Google Scholar
Gursky, S. 2005. Associations between adult spectral tarsiers. American Journal of Physical Anthropology 128: 7483.CrossRefGoogle ScholarPubMed
Halsey, L. G., Green, J. A., Wilson, R. P., and Frappell, P. B. 2009a. Accelerometry to estimate energy expenditure during activity: best practice with data loggers. Physiological and Biochemical Zoology 82: 396404.Google Scholar
Halsey, L. G., Shepard, E. L. C., Quintana, F., et al. 2009b. The relationship between oxygen consumption and body acceleration in a range of species. Comparative Biochemistry and Physiology A: Molecular & Integrative Physiology 152: 197202.Google Scholar
Hansen, M. C. and Riggs, R. A. 2008. Accuracy, precision, and observation rates of global positioning system telemetry collars. Journal of Wildlife Management 72: 518526.Google Scholar
Hebblewhite, M. and Haydon, D. T. 2010. Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 23032312.Google Scholar
Hebblewhite, M., Percy, M., and Merrill, E. H. 2007. Are all global positioning system collars created equal? Correcting habitat-induced bias using three brands in the Central Canadian Rockies. Journal of Wildlife Management 71: 20262033.Google Scholar
Hulbert, I. A. R. and French, J. 2001. The accuracy of GPS for wildlife telemetry and habitat mapping. Journal of Applied Ecology 38: 869878.Google Scholar
Isbell, L. A. 1994. Predation on primates: ecological patterns and evolutionary consequences. Evolutionary Anthropology: Issues, News, and Reviews 3: 6171.Google Scholar
Isbell, L. A. and Young, T. P. 1993. Human presence reduces predation in a free-ranging vervet monkey population in Kenya. Animal Behaviour 45: 12331235.Google Scholar
Jachowski, D. S., Slotow, R., and Millspaugh, J. J. 2014. Good virtual fences make good neighbors: opportunities for conservation. Animal Conservation 17: 187196.Google Scholar
Jolly, A. 1966. Lemur Behavior: A Madagascar Field Study. University of Chicago Press, Chicago, IL.Google Scholar
Juarez, C. P., Rotundo, M. A., Berg, W., and Fernandez-Duque, E. 2011. Costs and benefits of radio-collaring on the behavior, demography, and conservation of owl monkeys (Aotus azarai) in Formosa, Argentina. International Journal of Primatology 32: 6982.Google Scholar
Kaplan, E. D. and Hegarty, C. J. 2005. Understanding GPS: Principles and Applications. Artech House, London.Google Scholar
Kappeler, P. 1997. Intrasexual selection in Mirza coquereli: evidence for scramble competition polygyny in a solitary primate. Behavioral Ecology and Sociobiology 41: 115127.Google Scholar
Kappeler, P., Barrett, L., Blumstein, D. T., and Clutton-Brock, T. H. E. 2013. Flexibility and constraint in the evolution of mammalian social behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences 368: 20120337.Google Scholar
Kays, R., Crofoot, M. C., Jetz, W., and Wikelski, M. 2015. Terrestrial animal tracking as an eye on life and planet. Science 348: DOI: 10.1126/science.aaa2478.Google Scholar
King, A. J., Wilson, A. M., Wilshin, S. D., et al. 2012. Selfish-herd behaviour of sheep under threat. Current Biology 22: R561R562.Google Scholar
Kranstauber, B., Kays, R., LaPoint, S. D., Wikelski, M., and Safi, K. 2012. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. Journal of Animal Ecology 81: 738746.Google Scholar
Krause, J., Krause, S., Arlinghaus, R., et al. 2013. Reality mining of animal social systems. Trends in Ecology & Evolution 28: 541551.Google Scholar
Lesku, J. A., Rattenborg, N. C., Valcu, M., et al. 2012. You snooze, you lose: adaptive sleep loss in polygynous pectoral sandpipers. Journal of Sleep Research 21: 5.Google Scholar
Lynch, E., Angeloni, L., Fristrup, K., Joyce, D., and Wittemyer, G. 2013. The use of on-animal acoustical recording devices for studying animal behavior. Ecology and Evolution 3: 20302037.Google Scholar
Macdonald, D. W. and Amlaner, C. J. 1980. A practical guide to radio tracking. Pages 143159 in A Handbook on Biotelemetry and Radio Tracking. Amlaner, C. J. and MacDonald, D. W. (Eds.). Pergamon Press, Oxford.Google Scholar
Manson, J. H. and Wrangham, R. W. 1991. Intergroup aggression in chimpanzees and humans. Current Anthropology 32: 369390.Google Scholar
Markham, A. C. and Altmann, J. 2008. Remote monitoring of primates using automated GPS technology in open habitats. American Journal of Primatology 70: 15.Google Scholar
Markham, A. C., Alberts, S. C., and Altmann, J. 2012. Intergroup conflict: ecological predictors of winning and consequences of defeat in a wild primate population. Animal Behaviour 84: 399403.Google Scholar
Markham, A. C., Guttal, V., Alberts, S. C., and Altmann, J. 2013. When good neighbors don’t need fences: temporal landscape partitioning among baboon social groups. Behavioral Ecology and Sociobiology 67: 875884.Google Scholar
Merker, S. 2006. Habitat-specific ranging patterns of Dian’s tarsiers (Tarsius dianae) as revealed by radiotracking. American Journal of Primatology 68: 111125.Google Scholar
Moil, R. J., Millspaugh, J. J., Beringer, J., Sartwell, J., and He, Z. 2007. A new “view” of ecology and conservation through animal-borne video systems. Trends in Ecology & Evolution 22: 660668.Google Scholar
Nagy, M., Akos, Z., Biro, D., and Vicsek, T. 2010. Hierarchical group dynamics in pigeon flocks. Nature 464: 890899.Google Scholar
Nagy, M., Vásárhelyi, G., Pettit, B., et al. 2013. Context-dependent hierarchies in pigeons. Proceedings of the National Academy of Sciences 110: 1304913054.Google Scholar
Nathan, R., Getz, W. M., Revilla, E., et al. 2008. A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences of the United States of America 105: 1905219059.Google Scholar
Nathan, R., Spiegel, O., Fortmann-Roe, S., et al. 2012. Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon vultures. Journal of Experimental Biology 215: 986996.Google Scholar
Newmaster, S. G., Thompson, I. D., Steeves, R. A., et al. 2013. Examination of two new technologies to assess the diet of woodland caribou: video recorders attached to collars and DNA barcoding. Canadian Journal of Forest Research 43: 897900.Google Scholar
Nowak, K., le Roux, A., Richards, S. A., Scheijen, C. P. J., and Hill, R. A. 2014. Human observers impact habituated samango monkeys’ perceived landscape of fear. Behavioral Ecology 25. DOI: 10.1093/beheco/aru110.Google Scholar
Perez-Escudero, A. and de Polavieja, G. G. 2011. Collective animal behavior from Bayesian estimation and probability matching. PLoS Computational Biology 7. DOI: 10.1371/journal.pcbi.1002282.Google Scholar
Pettit, B., Perna, A., Biro, D., and Sumpter, D. J. T. 2013. Interaction rules underlying group decisions in homing pigeons. Journal of the Royal Society Interface 10. DOI: 10.1098/rsif.2013.0529.Google Scholar
Phillips, K. A., Elvey, C. R., and Abercrombie, C. L. 1998. Applying GPS to the study of primate ecology: A useful tool? American Journal of Primatology 46: 167172.Google Scholar
Qasem, L., Cardew, A., Wilson, A., et al. 2012. Tri-axial dynamic acceleration as a proxy for animal energy expenditure: should we be summing values or calculating the vector? PLoS ONE 7. DOI: 10.1371/journal.pone.0031187.Google Scholar
Rasmussen, D. R. 1991. Observer influence on range use of Macaca arctoides after 14 years of observation? Laboratory Primate Newsletter 30: 611.Google Scholar
Rattenborg, N. C., Voirin, B., Vyssotski, A. L., et al. 2008. Sleeping outside the box: electroencephalographic measures of sleep in sloths inhabiting a rainforest. Biology Letters 4: 402405.Google Scholar
Recio, M. R., Mathieu, R., Denys, P., Sirguey, P., and Seddon, P. J. 2011. Lightweight GPS-tags, one giant leap for wildlife tracking? An assessment approach. PLoS ONE 6. DOI: 10.1371/journal.pone.0028225.Google Scholar
Rempel, R. S., Rodgers, A. R., and Abraham, K. F. 1995. Performance of a GPS animal location system under boreal forest canopy. Journal of Wildlife Management 59: 543551.Google Scholar
Ren, B., Li, M., Long, Y., Grüter, C. C., and Wei, F. 2008. Measuring daily ranging distances of Rhinopithecus bieti via a global positioning system collar at Jinsichang, China: a methodological consideration. International Journal of Primatology 29(3): 783.Google Scholar
Rodgers, A. R. 2001. Recent telemetry technology. Pages 82121 in Radio Tracking and Animal Populations. Millspaugh, J. J. and Marzluff, J. M. (Eds.). Academic Press, San Diego, CA.Google Scholar
Rodman, P. S. and Mitani, J. C. 1987. Orangutans: sexual dimorphism in a solitary species. Pages 146154 in Primate Societies. Smuts, B., Cheney, D. L., Seyfarth, R. M., Struhsaker, T. T., and Wrangham, R. (Eds.). Chicago University Press, Chicago, IL.Google Scholar
Rutz, C. and Troscianko, J. 2013. Programmable, miniature video-loggers for deployment on wild birds and other wildlife. Methods in Ecology and Evolution 4: 114122.Google Scholar
Sapir, N., Wikelski, M., McCue, M. D., Pinshow, B., and Nathan, R. 2010. Flight modes in migrating European bee-eaters: heart rate may indicate low metabolic rate during soaring and gliding. PLoS ONE 5: e13956.Google Scholar
Sapir, N., Rotics, S., Kaatz, M., et al. 2013. Multi-year tracking of white storks (Ciconia ciconia): how the environment shapes the movement and behavior of a soaring-gliding inter-continental migrant. Integrative and Comparative Biology 53: E189E189.Google Scholar
Shepard, E. L. C., Wilson, R. P., Halsey, L. G., et al. 2009. Derivation of body motion via appropriate smoothing of acceleration data. Aquatic Biology 4: 235241.Google Scholar
Shumaker, R. 2007. Orangutans. Voyager Press, St. Paul, MI.Google Scholar
Sih, A. 2013. Understanding variation in behavioural responses to human-induced rapid environmental change: a conceptual overview. Animal Behaviour 85: 10771088.Google Scholar
Singleton, I. and van Schaik, C. P. 2001. Orangutan home range size and its determinants in a Sumatran swamp forest. International Journal of Primatology 22: 877911.Google Scholar
Spiegel, O., Getz, W. M., and Nathan, R. 2013. Factors influencing foraging search efficiency: why do scarce lappet-faced vultures outperform ubiquitous white-backed vultures? The American Naturalist 181: E102E115.Google Scholar
Sprague, D. 2004. GPS collars for monkeys: the state of the technology. American Journal of Physical Anthropology 186: 151154.Google Scholar
Sprague, D. S., Kabaya, M., and Hagihara, K. 2004. Field testing a global positioning system (GPS) collar on a Japanese monkey: reliability of automatic GPS positioning in a Japanese forest. Primates 45: 151154.Google Scholar
Strandburg-Peshkin, A., Twomey, C. R., Bode, N. W. F., et al. 2013. Visual sensory networks and effective information transfer in animal groups. Current Biology 23: R709R711.Google Scholar
Strandburg-Peshkin, A., Farine, D. R., Couzin, I. D., and Crofoot, M. C. 2015. Shared decision-making drives collective movement in wild baboons. Science 348: 13581361.Google Scholar
Thorington, R. W., Muckenhirn, N. A., and Montgomery, G. G. 1976. Movements of a wild night monkey (Aotus trivirgatus). Pages 3234 in Neotropical Primates. Thorington, R. W. and Heltne, P. G. (Eds.). National Academy of Sciences, Washington, DC.Google Scholar
Tomkiewicz, S. M., Fuller, M. R., Kie, J. G., and Bates, K. K. 2010. Global positioning system and associated technologies in animal behaviour and ecological research. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 21632176.Google Scholar
Tomlinson, S., Arnall, S. G., Munn, A., et al. 2014. Applications and implications of ecological energetics. Trends in Ecology & Evolution 29: 280290.Google Scholar
van Schaik, C. P. 1983. On the ultimate causes of primate social systems. Behaviour 85: 91117.Google Scholar
Voirin, B., Scriba, M. F., Martinez-Gonzalez, D., et al. 2014. Ecology and neurophysiology of sleep in two wild sloth species. Sleep 37: 753.Google Scholar
Wall, J., Wittemyer, G., Klinkenberg, B., and Douglas-Hamilton, I. 2014. Novel opportunities for wildlife conservation and research with real-time monitoring. Ecological Applications 24: 593601.Google Scholar
Watts, I., Nagy, M., Biro, T. B., and de Perera, D. 2016. Misinformed leaders lose influence over pigeon flocks. Biology Letters 12: 20160544.Google Scholar
White, E. C., Dikangadissi, J. T., Dimoto, E., et al. 2010. Home-range use by a large horde of wild Mandrillus sphinx. International Journal of Primatology 31: 627645.Google Scholar
Wikelski, M. and Kays, R. 2011. Movebank: archive, analysis and sharing of animal movement data. Available at: www.movebank.org.Google Scholar
Wikelski, M., Kays, R. W., Kasdin, N. J., et al. 2007. Going wild: what a global small-animal tracking system could do for experimental biologists. Journal of Experimental Biology 210: 181186.Google Scholar
Wilcove, D. S. and Wikelski, M. 2008. Going, going, gone: is animal migration disappearing. PLOS Biology 6: e188.Google Scholar
Williams, D. M., Quinn, A. D., and Porter, W. F. 2012. Impact of habitat-specific GPS positional error on detection of movement scales by first-passage time analysis. PLoS ONE 7. DOI: 10.1371/journal.pone.0048439.Google Scholar
Wilson, A. M., Lowe, J. C., Roskilly, K., et al. 2013. Locomotion dynamics of hunting in wild cheetahs. Nature 498: 185189.Google Scholar
Wilson, R. P., White, C. R., Quintana, F., et al. 2006. Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. Journal of Animal Ecology 75: 10811090.Google Scholar
Wilson, R. P., Shepard, E., and Liebsch, N. 2008. Prying into the intimate details of animal lives: use of a daily diary on animals. Endangered Species Research 4: 123137.Google Scholar
Yoda, K., Murakoshi, M., Tsutsui, K., and Kohno, H. 2011. Social interactions of juvenile brown boobies at sea as observed with animal-borne video cameras. PLoS ONE 6. DOI: 10.1371/journal.pone.0019602.Google Scholar
Zinner, D., Hindahl, J., and Kaumanns, W. 2001. Experimental intergroup encounters in lion-tailed macaques (Macaca silenus). Primate Report 59: 7792.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×