We examined quantity and quality components of primary seed dispersal for an assemblage of sigmodontine rodents in a high-elevation montane tropical forest in Peru. We collected faecal samples from 134 individuals belonging to seven rodent species from the subfamily Sigmodontinae (Cricetidae) over a 2-y period. We conducted seed viability tests for seeds found in faecal samples. We identified seeds from eight plant families (Bromeliaceae, Annonaceae, Brassicaceae, Ericaceae, Melastomatacae, Myrtaceae, Rosaceae, Solanaceae), nine genera and 13 morphospecies. The most abundant seeds belonged to Gaultheria sp. 1 (46% of total) and Miconia sp. 1 (31% of total), while the most viable seeds belonged to Greigia sp. (84% viability) and Guatteria sp. (80% viability). We utilized relative rodent abundance, seed species diversity, seed abundance and seed viability per rodent species to calculate an index of rodent disperser effectiveness, and found that Thomasomys kalinowskii was the most effective disperser, followed by Akodon torques, Calomys sorellus, Thomasomys oreas, Oligoryzomys andinus and Microryzomys minutus. Plant genera dispersed by sigmodontine rodents overlapped more with bird- and terrestrial-mammal-dispersed plants than with bat-dispersed plants. Future neotropical seed dispersal studies should consider small rodents as potential seed-dispersers, especially in tropical habitats where small-seeded, berry-forming shrubs and trees are present.