Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-23T11:10:18.979Z Has data issue: false hasContentIssue false

2 - Signatures of Hit-and-run Collisions

from Part One - Dynamical Evolution

Published online by Cambridge University Press:  25 February 2017

Linda T. Elkins-Tanton
Affiliation:
Arizona State University
Benjamin P. Weiss
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Planetesimals
Early Differentiation and Consequences for Planets
, pp. 7 - 37
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnor, C. B., Canup, R. M., and Levison, H. F. 1999. On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus, 142, 219237.CrossRefGoogle Scholar
Agnor, C. and Asphaug, E. 2004. Accretion efficiency during planetary collisions. Astrophysical Journal Letters, 613, L157.CrossRefGoogle Scholar
Alidibirov, M. and Dingwell, D. B. 1996. Magma fragmentation by rapid decompression. Nature, 380, 146148.CrossRefGoogle Scholar
Asphaug, E. 2010. Similar-sized collisions and the diversity of planets. Chemie der Erde, 70, 199219.CrossRefGoogle Scholar
Asphaug, E. and Benz, W. (1996). Size, density, and structure of comet Shoemaker-Levy 9 inferred from the physics of tidal breakup. Icarus, 121, 225248.CrossRefGoogle Scholar
Asphaug, E. and Reufer, A. (2013). Late origin of the Saturn system. Icarus, 223, 544565.CrossRefGoogle Scholar
Asphaug, E. and Reufer, A. (2014). Mercury and other iron-rich planetary bodies as relics of inefficient accretion. Nature Geosciences, 7, 564568.CrossRefGoogle Scholar
Asphaug, E., Agnor, C. B., and Williams, Q. 2006. Hit-and-run planetary collisions. Nature, 439, 155160.CrossRefGoogle ScholarPubMed
Asphaug, E., Jutzi, M., and Movshovitz, N. 2011. Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters, 308, 369379.CrossRefGoogle Scholar
Asphaug, E., Collins, G., and Jutzi, M. 2015. Global-scale impacts. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 661678.Google Scholar
Barucci, M. A., Belskaya, I. N., Fornasier, S., et al. 2012. Overview of Lutetia’s surface composition. Planetary and Space Science, 66, 2330.CrossRefGoogle Scholar
Belton, M. J., Thomas, P., Veverka, J., et al., 2007. The internal structure of Jupiter family cometary nuclei from Deep Impact observations: The ‘talps’ or ‘layered pile’ model. Icarus, 187, 332344.CrossRefGoogle Scholar
Benz, W. and Asphaug, E. (1999). Catastrophic disruptions revisited. Icarus, 142, 520.CrossRefGoogle Scholar
Benz, W., Cameron, A. G. W., and Melosh, H. J. 1989. The origin of the Moon and the single impact hypothesis, III. Icarus, 81, 113131.CrossRefGoogle Scholar
Binzel, R. P., Burbine, T. H., and Bus, J. 1996. Groundbased reconnaissance of asteroid 253 Mathilde: Visible wavelength spectrum and meteorite comparison. Icarus, 119, 447449.CrossRefGoogle Scholar
Blundy, J., Cashman, K. and Humphreys, M. 2006. Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature, 443, 7680.CrossRefGoogle ScholarPubMed
Bonsor, A., Leinhardt, Z. M., Carter, P. J., et al. (2015). A collisional origin to Earth’s non-chondritic composition? Icarus, 247, 291300.CrossRefGoogle Scholar
Bottke, W. F., Durda, D. D., Nesvorný, D., et al. 2005. The fossilized size distribution of the main asteroid belt. Icarus, 175, 111140.CrossRefGoogle Scholar
Bryson, J. F. J., Nichols, C. I. O., Herrero-Albillos, J., et al. 2015. Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature, 517, 472475.CrossRefGoogle ScholarPubMed
Burbine, T. H., Meibom, A., and Binzel, R. P. 1996. Mantle material in the main belt: Battered to bits? Meteoritics & Planetary Science, 31, 607620.CrossRefGoogle Scholar
Canup, R. M. and Asphaug, E. (2001). Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature, 412, 708712.CrossRefGoogle Scholar
Canup, R. M. 2005. A giant impact origin of Pluto-Charon. Science, 307, 546–50.CrossRefGoogle ScholarPubMed
Chambers, J. E. and Wetherill, G. W. 1998. Making the terrestrial planets: N-Body integrations of planetary embryos in three dimensions. Icarus, 136, 304327.CrossRefGoogle Scholar
Chambers, J. E. 2013. Late-stage planetary accretion including hit-and-run collisions and fragmentation. Icarus, 224, 4356.CrossRefGoogle Scholar
Chandrasekhar, S. 1969. Ellipsoidal Figures of Equilibrium. New Haven, CT: Yale University Press.Google Scholar
Ciesla, F. J., Davison, T. M., Collins, G. S., and O’Brien, D. P. 2013. Thermal consequences of impacts in the early solar system. Meteoritics & Planetary Science, 48, 25592576.CrossRefGoogle Scholar
Clenet, H., Jutzi, M., Barrat, J. A., et al. 2014. A deep crust–mantle boundary in the asteroid 4 Vesta. Nature, 511, 303306.CrossRefGoogle ScholarPubMed
Consolmagno, G. J., Golabek, G. J., Turrini, D., et al. 2015. Is Vesta an intact and pristine protoplanet? Icarus. 254, 190201.CrossRefGoogle Scholar
Cuzzi, J. N., Hogan, R. C., and Bottke, W. F. 2010. Towards initial mass functions for asteroids and Kuiper belt objects. Icarus, 208, 518538.CrossRefGoogle Scholar
Darwin, G. H. 1879. A tidal theory of the evolution of satellites. Observatory, 3,7984.Google Scholar
Davis, D. R., Chapman, C. R., Weidenschilling, S. J., and Greenberg, R. 1985. Collisional history of asteroids: Evidence from Vesta and the Hirayama families. Icarus, 62, 3053.CrossRefGoogle Scholar
DeMeo, F. E., Binzel, R. P., Slivan, S. M., and Bus, S. J. 2009. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160180.CrossRefGoogle Scholar
Dohnanyi, J. W. 1969. Collisional models of asteroids and their debris. Journal of Geophysical Research, 74, 25312554.CrossRefGoogle Scholar
Durda, D. D., Greenberg, R., and Jedicke, R. 1998. Collisional models and scaling laws: A new interpretation of the shape of the main-belt asteroid size distribution. Icarus, 135, 431440.CrossRefGoogle Scholar
Farinella, P., Paolicchi, P., and Zappala, V. 1982. The asteroids as outcomes of catastrophic collisions. Icarus, 52, 409433.CrossRefGoogle Scholar
Fu, R. R. and Elkins-Tanton, L. T. 2014. The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth and Planetary Science Letters, 390, 128137.CrossRefGoogle Scholar
Golabek, G. J., Jutzi, M., Gerya, T. V., and Asphaug, E. 2014. Towards coupled giant impact and long term interior evolution models. European Planetary Science Congress 2014, EPSC Abstracts, 9, EPSC2014-433.Google Scholar
Holsapple, K. A. and Housen, K. R. 1986. Scaling laws for the catastrophic collisions of asteroids. Memorie della Societa Astronomica Italiana 57, 6585.Google Scholar
Jackson, A. P. and Wyatt, M. C. 2012. Debris from terrestrial planet formation: the Moon-forming collision. Monthly Notices of the Royal Astronomical Society, 425, 657679.CrossRefGoogle Scholar
Jaeger, R. R. and Lipschutz, M. E. 1967. Implications of shock effects in iron meteorites. Geochimica et Cosmochimica Acta, 31, 18111832.CrossRefGoogle Scholar
Johnson, B. C., Minton, D. A., Melosh, H. J., and Zuber, M. T. 2015. Impact jetting as the origin of chondrules. Nature, 51, 339341.CrossRefGoogle Scholar
Jutzi, M. and Asphaug, E. 2015. The shape and structure of cometary nuclei as a result of low-velocity accretion. Science, 348, 13551358.CrossRefGoogle ScholarPubMed
Haack, H., Scott, E. R., Rasmussen, K. L., 1996. Thermal and shock history of mesosiderites and their large parent asteroid. Geochimica et Cosmochimica Acta, 60, 26092619.CrossRefGoogle Scholar
Kaasalainen, M., Torppa, J., and Piironen, J. 2002. Models of twenty asteroids from photometric data. Icarus, 159, 369395.CrossRefGoogle Scholar
Keil, K., Haack, H., and Scott, E. R. D. 1994. Catastrophic fragmentation of asteroids: Evidence from meteorites. Planetary and Space Science, 42, 11091122.CrossRefGoogle Scholar
Kokubo, E. and Ida, S. 1998. Oligarchic growth of protoplanets. Icarus 131, 171178.CrossRefGoogle Scholar
Krot, A.N., Amelin, Y., Cassen, P., and Meibom, A. 2005. Young chondrules in CB chondrites from a giant impact in the early solar system. Nature, 436, 989992.CrossRefGoogle Scholar
Leinhardt, Z. M., Marcus, R. A., and Stewart, S. T., 2010. The formation of the collisional family around the dwarf planet Haumea. Astrophysical Journal, 714, 17891799.CrossRefGoogle Scholar
Marinova, M. M., Aharonson, O., and Asphaug, E. 2008. Mega-impact formation of the Mars hemi- spheric dichotomy. Nature, 453, 12161219.CrossRefGoogle Scholar
McSween, H. Y. 1999. Meteorites and Their Parent Planets. Cambridge: Cambridge University Press.Google Scholar
Melosh, H. J. 2007. A hydrocode equation of state for SiO2. Meteoritics & Planetary Science, 42, 20792098.CrossRefGoogle Scholar
Morris, M. A. and Desch, S. J. 2010. Thermal histories of chondrules in solar nebula shocks. Astrophysical Journal, 722, 1474.CrossRefGoogle Scholar
Moskovitz, N. A. and Walker, R. J. 2011. Size of the group IVA iron meteorite core: Constraints from the age and composition of Muonionalusta. Earth and Planetary Science Letters, 308, 410416.CrossRefGoogle Scholar
Nimmo, F. and Kleine, T. 2015. Early differentiation and core formation: processes and timescales. In The Early Earth: Accretion and Differentiation, ed. Badro, J. and Walter, M.. New York: John Wiley & Sons, 83.CrossRefGoogle Scholar
O’Brien, D.P. and Greenberg, R. 2003. Steady-state distributions for collisional populations: analytical solution with size-dependent strength, Icarus, 164, 334345.CrossRefGoogle Scholar
O’Brien, D. P., Morbidelli, A., and Levison, H. F. 2006. Terrestrial planet formation with strong dynamical friction. Icarus, 184, 3958.CrossRefGoogle Scholar
Ogihara, M., Kobayashi, H., Inutsuka, S.-i., and Suzuki, T. K. 2015. Formation of terrestrial planets in disks evolving via disk winds and implications for the origin of the solar system’s terrestrial planets. Astronomy & Astrophysics, 578, A36.CrossRefGoogle Scholar
Ostro, S. J., Hudson, R. S., and Nolan, M. C., et. al. 2000. Radar observations of asteroid (216) Kleopatra. Science, 288, 836839.CrossRefGoogle ScholarPubMed
Peplowski, P. N., Evans, L. G., Hauck, S. A. 2nd, et al. 2011. Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science, 333, 1850.CrossRefGoogle ScholarPubMed
Raymond, S. N., Quinn, T., and Lunine, J. I. 2007. High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability. Astrobiology, 7, 6684.CrossRefGoogle ScholarPubMed
Reddy, V., Le Corre, L., and O’Brien, D. P. et al., 2012. Delivery of dark material to Vesta via carbonaceous chondritic impacts. Icarus, 221, 544559.CrossRefGoogle Scholar
Reufer, A., Meier, M. M. M., Benz, W., and Wieler, R. 2012. A hit-and-run giant impact scenario. Icarus, 221, 296299.CrossRefGoogle Scholar
Rodionov, V. N., Adushkin, V. V., Kostyuchenko, V. N., et. al. 1972. Mechanical Effect of an Underground Nuclear Explosion. Los Alamos, New Mexico: United States Atomic Energy Commission. UCRL-Trans-10676.Google Scholar
Safronov, V. S. and Zvjagina, E. V. 1969. Relative sizes of the largest bodies during the accumulation of planets. Icarus, 10, 109.CrossRefGoogle Scholar
Sahijpal, S., Soni, P., and Gupta, G. 2007. Numerical simulations of the differentiation of accreting planetesimals with 26Al and 60Fe as the heat sources. Meteoritics & Planetary Science, 42, 15291548.CrossRefGoogle Scholar
Sanders, I. S. and Scott, E. R. D. 2012. The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteoritics & Planetary Science, 47, 21702192.CrossRefGoogle Scholar
Schenk, P. M., Asphaug, E., McKinnon, W. B., Melosh, H. J., and Weissman, P. R. 1996. Cometary nuclei and tidal disruption: The geologic record of crater chains on Callisto and Ganymede. Icarus, 121, 249274.CrossRefGoogle Scholar
Scott, E. R. D. and Krot, A. N. 2003. Chondrites and their components. Treatise on Geochemistry, 1, 143200.Google Scholar
Scott, E. R. D., Keil, K., Goldstein, J. I., et al. 2015. Early impact history and dynamical origin of differentiated meteorites and asteroids. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 573596.Google Scholar
Sekine, Y. and Genda, H. 2012. Giant impacts in the Saturnian system: A possible origin of diversity in the inner mid-sized satellites. Planetary and Space Science, 63–64, 133138.CrossRefGoogle Scholar
Sharp, T. G. and de Carli, P. S. 2006. Shock effects in meteorites. In Meteorites and the Early Solar System II, edLauretta, . D. S. and McSween, H. Y.. Tucson, AZ: University of Arizona Press, 653677.CrossRefGoogle Scholar
Sierks, H., Lamy, P., Barbieri, C., et al. 2011. Images of asteroid 21 Lutetia: a remnant planetesimal from the early solar system. Science, 334, 487490.CrossRefGoogle ScholarPubMed
Solomatov, V. and Stevenson, D. J. 1993. Suspension in convective layers and style of differentiation in a terrestrial magma ocean. Journal of Geophysical Research, 98, 53755390.CrossRefGoogle Scholar
Sorby, H. C., 1864. On the microscopic structure of meteorites. Philospohical Magazine, 28, 157159.Google Scholar
Stevenson, D. J. 1989. Spontaneous small-scale melt segregation in partial melts undergoing deformation. Geophysical Research Letters, 16, 10671070.CrossRefGoogle Scholar
Stewart, S. T. and Leinhardt, Z. M. 2012. Collisions between gravity-dominated bodies. II. The diversity of impact outcomes during the end stage of planet formation. Astrophysics Journal, 751, 32.CrossRefGoogle Scholar
Thompson, S. and Lauson, H. 1972. Sandia National Laboratories Technical Report, SC-RR- 710714, Sandia National Laboratories, Albuquerque, NM.Google Scholar
Veverka, J., Thomas, P., Harch, A., et al. 1997. NEAR’s flyby of 253 Mathilde: Images of a C asteroid. Science, 278, 21092114.CrossRefGoogle Scholar
Voorhees, P. W. and Glicksman, M. E. 1984. Solution to the multi-particle diffusion problem with applications to Ostwald ripening – II. Computer simulations. Acta Metallurgica, 32, 20132030.CrossRefGoogle Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., et al., 2011. A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.CrossRefGoogle ScholarPubMed
Wasson, J. T. 1990. Ungrouped iron meteorites in Antarctica: Origin of anomalously high abundance. Science, 249, 900902.CrossRefGoogle ScholarPubMed
Weidenschilling, S. J. 1977. The distribution of mass in the planetary system and solar nebula. Astrophysics and Space Science, 51, 153158.CrossRefGoogle Scholar
Weiss, B. P., Elkins-Tanton, L. T., Barucci, M. A., et al. 2012. Possible evidence for partial differentiation of asteroid Lutetia from Rosetta. Planetary and Space Science, 66, 137146.CrossRefGoogle Scholar
Wetherill, G. W. 1985. Occurrence of giant impacts during the growth of the terrestrial planets. Science, 228, 877879.CrossRefGoogle ScholarPubMed
Williams, Q. 2009. Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores. Earth and Planetary Science Letters, 284, 564569.CrossRefGoogle Scholar
Wilson, L. and Keil, K., 1991. Consequences of explosive eruptions on small solar system bodies – the case of the missing basalts on the aubrite parent body. Earth and Planetary Science Letters, 104, 505512.CrossRefGoogle Scholar
Wood, J. A. 1964. The cooling rates and parent planets of several iron meteorites. Icarus, 3, 429.CrossRefGoogle Scholar
Yang, J., Goldstein, J. I., and Scott, E. R. D. 2007. Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature, 446, 888891.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×