Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-27T02:20:46.292Z Has data issue: false hasContentIssue false

Nonlinear Beltrami equation: lower estimates of Schwarz lemma’s type

Published online by Cambridge University Press:  29 November 2023

Igor Petkov
Affiliation:
Admiral Makarov National University of Shipbuilding, 9 Heroes of Ukraine Avenue, Mykolaiv 54007, Ukraine e-mail: igorpetkov83@gmail.com
Ruslan Salimov*
Affiliation:
Institute of Mathematics of NAS of Ukraine, 3 Tereschenkivska Street, Kyiv-4 01024, Ukraine e-mail: stefanmv43@gmail.com
Mariia Stefanchuk
Affiliation:
Institute of Mathematics of NAS of Ukraine, 3 Tereschenkivska Street, Kyiv-4 01024, Ukraine e-mail: stefanmv43@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

We study a nonlinear Beltrami equation $f_\theta =\sigma \,|f_r|^m f_r$ in polar coordinates $(r,\theta ),$ which becomes the classical Cauchy–Riemann system under $m=0$ and $\sigma =ir.$ Using the isoperimetric technique, various lower estimates for $|f(z)|/|z|, f(0)=0,$ as $z\to 0,$ are derived under appropriate integral conditions on complex/directional dilatations. The sharpness of the above bounds is illustrated by several examples.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

1 Introduction

Recently, numerous nonlinear counterparts of the classical Beltrami equation are successfully studied by many mathematicians. The directional dilatation coefficients provide fruitful and flexible tools for investigating the main features of regular solutions to these equations (see [Reference Andreian Cazacu2, Reference Golberg9, Reference Ryazanov, Srebro and Yakubov26]).

In this paper, we estimate the ratio $|f(z)|/|z|$ under $f(0)=0,$ which can be treated as asymptotic dilation or real differentiability condition (cf. [Reference Bojarski, Gutlyanskiĭ, Martio and Ryazanov6, Reference Golberg10]) at the origin and goes back to the classical Schwarz lemma bounds.

Let $\mathbb {C}$ be the complex plane. In the complex notation $f=u+iv$ and $z=x+iy$ , the Beltrami equation in a domain $G\subset \mathbb {C}$ has the form

(1.1) $$ \begin{align} f_{\overline{z}}\,=\,\mu(z)f_{z}, \end{align} $$

where $\mu \colon G\to \mathbb {C}$ is a measurable function and

$$ \begin{align*}f_{\overline{z}}=\frac{1}{2}(f_{x}+if_{y})\qquad \mathrm{and} \qquad f_{z}=\frac{1}{2}(f_{x}-if_{y})\end{align*} $$

are formal derivatives of f in $\overline {z}$ and z, while $f_{x}$ and $f_{y}$ are partial derivatives of f in the variables x and y, respectively.

Various existence theorems for solutions of the Sobolev class have been recently established applying the modulus approach for a quite wide class of linear and quasilinear degenerate Beltrami equations (see, e.g., [Reference Gutlyanskiĭ, Ryazanov, Srebro and Yakubov14, Reference Gutlyanskiĭ, Ryazanov, Srebro and Yakubov15, Reference Martio, Ryazanov, Srebro and Yakubov23, Reference Ryazanov, Srebro and Yakubov26, Reference Sevost’yanov34, Reference Srebro and Yakubov35]).

Let $\sigma \colon G \to \mathbb {C}$ be a measurable function and $m\geqslant 0.$ We consider the following equation written in the polar coordinates $(r,\theta )$ :

(1.2) $$ \begin{align} f_{r}=\sigma(re^{i\theta})\,|f_{\theta}|^{m}\, f_{\theta}, \end{align} $$

where $f_{\theta }$ and $f_{r}$ are the partial derivatives of f by $\theta $ and $r,$ respectively. The equations of this type were studied in the works [Reference Golberg and Salimov11, Reference Golberg, Salimov and Stefanchuk12, Reference Salimov and Stefanchuk30Reference Salimov and Stefanchuk33].

Applying the relations between these derivatives and the formal derivatives

(1.3) $$ \begin{align} rf_{r}\,=\,zf_{z}+\overline{z}f_{\overline{z}}\,, \qquad f_{\theta}\,=\,i(zf_{z}-\overline{z}f_{\overline{z}}) \end{align} $$

(see, e.g., [Reference Astala, Iwaniec and Martin5, (21.51)]), one can rewrite equation (1.2) in the Cartesian form:

(1.4) $$ \begin{align} f_{\overline{z}}\,=\,\frac{z}{\overline{z}}\,\frac{\widetilde{\sigma}(z)\,|zf_{z}-\overline{z}f_{\overline{z}}|^{m}-1}{\widetilde{\sigma}(z)\,|zf_{z}-\overline{z}f_{\overline{z}}|^{m}+1}\, f_{z}\,, \end{align} $$

where $\widetilde {\sigma }(z)=i\sigma (z)|z|$ .

Under $m=0$ , equation (1.4) reduces to the standard linear Beltrami equation (1.1) with the complex coefficient

$$ \begin{align*} \mu(z)\,=\,\frac{z}{\overline{z}}\,\frac{i\sigma(z)\,|z|-1}{i\sigma(z)\,|z|+1}\,. \end{align*} $$

Picking $m=0$ and $\sigma =-i/|z|$ in (1.4), we arrive at the classical Cauchy–Riemann system. For $m>0$ , equation (1.4) provides a partial case of the general nonlinear system of equations (7.33) given in [Reference Astala, Iwaniec and Martin5, Section 7.7].

Next, we consider an equation of another type, namely

(1.5) $$ \begin{align} f_{\theta}=\sigma(re^{i\theta})\,|f_{r}|^{m}\, f_{r}. \end{align} $$

Applying the relations (1.3), one can rewrite equation (1.5) by

(1.6) $$ \begin{align} f_{\overline{z}}\,=\,\frac{z}{\overline{z}}\,\frac{1+i\sigma(z)\,|z|^{-m-1}|zf_{z}+\overline{z}f_{\overline{z}}|^{m}}{1-i\sigma(z)\,|z|^{-m-1}|zf_{z}+\overline{z}f_{\overline{z}}|^{m}}\, f_{z}. \end{align} $$

Assuming $m=0$ , equation (1.6) also becomes the standard linear Beltrami equation (1.1) with

$$ \begin{align*} \mu(z)\,= \,\frac{z}{\overline{z}}\,\frac{1+i\sigma(z)/|z|}{1-i\sigma(z)/|z|}\, \,. \end{align*} $$

Choosing $m=0$ and $\sigma =i|z|$ in (1.6), we arrive again at the classical Cauchy–Riemann system. Later on, we assume that $m>0.$

A mapping $f \colon G \to \mathbb C$ is called regular at a point $z_0\in G,$ if f has the total differential at this point and its Jacobian $J_f=|f_z|^{2}-|f_{\bar {z}}|^{2}$ does not vanish (cf. [Reference Lehto and Virtanen22, I.1.6]). A homeomorphism f of Sobolev class $W_{\mathrm {{loc}}}^{1, 1}$ is called regular, if $J_{f}>0$ a.e. By a regular solution of equation (1.6), we call a regular homeomorphism $f \colon G \to \mathbb C,$ which satisfies (1.6) a.e. in $G.$

The nonlinear equations (1.4) and (1.6) provide partial cases of the nonlinear system of two real partial differential equations (see [Reference Lavrent’ev and Šabat21, (1)] and [Reference Lavrent’ev19, Reference Lavrent’ev20]). Note that various nonlinear systems of similar partial differential equations studied from different aspects and features can be found in [Reference Adamowicz1, Reference Aronsson3Reference Astala, Iwaniec and Martin5, Reference Bojarski and Iwaniec7, Reference Carozza, Giannetti, di Napoli, Sbordone and Schiattarella8, Reference Guo and Kar13, Reference Kruschkal and Kühnau17Reference Lavrent’ev and Šabat21, Reference Romanov25, Reference Šabat27, Reference Šabat28].

2 Auxiliary results

Later on, we use the following notations:

$$ \begin{align*} B_r=\{z\in\mathbb C: |z|< r\}\,, \quad \mathbb B=\{z\in\mathbb C: |z| < 1\} \end{align*} $$

and

$$ \begin{align*} \gamma_r=\{z\in\mathbb C: |z|=r\}\,,\, \ \ \mathbb{A}(0,r_1,r_2)=\{z\in \mathbb{C}: \, r_1<|z|<r_2 \}. \end{align*} $$

The area of set $f(B_r)$ we denote by $S_f(r)=|f(B_r)|.$

Let $f:\mathbb {B}\to \mathbb {C}$ be a regular homeomorphism of the Sobolev class $W_{\mathrm {loc }}^{1,1}$ , and let $p>1$ . By the p-angular dilatation of the mapping f with respect to the point $z_0=0$ , we call a quantity

$$ \begin{align*}D_{p,f}(z) = D_{p,f}(re^{i\theta}) = \frac{|f_{\theta}(re^{i\theta})|^p}{r^p J_f(re^{i\theta})}\,,\end{align*} $$

where $z = re^{i\theta }$ and $J_f$ is the Jacobian of f.

For $D_{p,f}(z)$ and $p>1$ , denote

(2.1) $$ \begin{align} d_{p,f}(r)=\left( \frac{1}{2\pi r} \int\limits_{\gamma_r}\, D_{p,f}^{\frac{1}{p-1}}(z) \, |dz| \right)^{p-1}\,. \end{align} $$

The following statement provides a differential inequality for the area functional $S_f(r)=|f(B_r)|$ (see Lemma 2.1 in [Reference Golberg, Salimov and Stefanchuk12]).

Proposition 2.1 Let $f:\mathbb {B}\to \mathbb {C}$ be a regular homeomorphism of the Sobolev class $W_{\mathrm {loc }}^{1,1}$ that possesses the N-property, and let $p> 1$ . Then

$$ \begin{align*}S_f'(r) \geqslant 2\pi^{\frac{2-p}{2}} r^{1-p} d_{p,f}^{-1}(r) S_f^{\frac{p}{2}}(r)\end{align*} $$

for almost all (a.a.) $r \in [0, 1)$ .

Proposition 2.2 Let $f:\mathbb {B}\to \mathbb {C}$ be a regular homeomorphism of the Sobolev class $W_{\mathrm {loc }}^{1,1}$ that possesses the N-property, and let $p> 1$ and $K>0$ . If

(2.2) $$ \begin{align} d_{p,f}(r)\leqslant K \quad \text{for a.a.} \quad r\in (0,1)\,, \end{align} $$

then

(2.3) $$ \begin{align} S'_f(r)\geqslant 2\pi^{\frac{2-p}{2}}\, K^{-1}\, r^{1-p}\, S_f^{\frac{p}{2}}(r) \end{align} $$

for a.a. $r\in [0,1).$

Proof Indeed, due to the condition (2.2) and applying Proposition 2.1, we obtain (2.3).

Lemma 2.3 Let $f:\mathbb {B}\to \mathbb {C}$ be a regular homeomorphism of the Sobolev class $W_{\mathrm {loc }}^{1,1}$ that possesses the N-property, $1<p <2$ , and $K>0$ . If $d_{p,f}(r)\leqslant K$ for a.a. $r\in (0,1)$ , then for $r\in [0,1)$ ,

(2.4) $$ \begin{align} |f(B_r)|\geqslant\, C(p,K)\, r^2\,, \end{align} $$

where $ C(p,K)=\pi K^{\frac {2}{p-2}} $ .

Proof Let $0<\varepsilon <r<1$ . By (2.3), for a.a. $t\in [0,1)$ ,

$$ \begin{align*}\frac{S'_f(t)\, dt }{S^{\frac{p}{2}}_f(t)}\geqslant 2\pi^{\frac{2-p}{2}}\, K^{-1}\, t^{1-p}\,dt, \end{align*} $$

and integrating over the segment $[\varepsilon , r]$ , we obtain

$$ \begin{align*}\int\limits_\varepsilon^r \frac{S'_f(t) }{S^{\frac{p}{2}}_f(t)} \, dt \geqslant 2\pi^{\frac{2-p}{2}}\, K^{-1}\, \int\limits_\varepsilon^r t^{1-p}\,dt\,. \end{align*} $$

Hence,

$$ \begin{align*}\int\limits_\varepsilon^r \phi'_p(t)\, dt \geqslant \frac{2\pi^{\frac{2-p}{2}}\,}{(2-p)K} \left(r^{2-p}-\varepsilon^{2-p}\right), \end{align*} $$

where $\phi _p(t)=\frac {2}{2-p}\, S^{\frac {2-p}{2}}_f(t)\,.$

This function is nondecreasing on $[0, 1)$ , and

$$ \begin{align*}\int\limits_\varepsilon^r \phi'_p(t)\, dt \leqslant \phi_p(r)- \phi_p(\varepsilon)\,=\frac{2}{2-p}\, \left(S^{\frac{2-p}{2}}_f(r)-S^{\frac{2-p}{2}}_f(\varepsilon)\right) \end{align*} $$

(see Theorem IV.7.4 in [Reference Saks29]). Combining the last two inequalities, we have

$$ \begin{align*}S^{\frac{2-p}{2}}_f(r)\geqslant S^{\frac{2-p}{2}}_f(r)-S^{\frac{2-p}{2}}_f(\varepsilon) \geqslant \frac{\pi^{\frac{2-p}{2}}\,}{K} \left(r^{2-p}-\varepsilon^{2-p}\right)\,. \end{align*} $$

Finally, letting $\varepsilon \to 0$ , we get the estimate (2.4).

The following result is an analog of the well-known Ikoma–Schwartz lemma on estimating the limsup (see Corollary 3 in [Reference Ikoma16]).

Lemma 2.4 Let $f: \mathbb {B}\to \mathbb {C}$ be a regular homeomorphism of the Sobolev class $W_{\mathrm {loc }}^{1,1}$ that possesses the N-property and normalized by $f(0)= 0$ , and $1<p <2$ and $K>0$ . If $d_{p,f}(r)\leqslant K$ for a.a. $r\in (0,1)$ , then

$$ \begin{align*}\limsup\limits_{z\to 0} \, \frac{|f(z)|}{|z|}\geqslant K^{-\frac{1}{2-p}}\,.\end{align*} $$

Proof Denote $\mathcal {M}_f(r)=\max \limits _{|z|=r}|f(z)|$ . Since $f(0)=0$ , we have

(2.5) $$ \begin{align} S_f(r)\leqslant \pi \, \mathcal{M}^2_f(r)\,. \end{align} $$

Thus, applying Lemma 2.3, we obtain

$$ \begin{align*}\limsup\limits_{z\to 0} \, \frac{|f(z)|}{|z|}=\limsup\limits_{r\to 0} \frac{\mathcal{M}_f(r)}{r}\geqslant \limsup\limits_{r\to 0} \sqrt{\frac{S_f(r)}{\pi r^2}}\geqslant K^{-\frac{1}{2-p}}\,.\\[-43pt] \end{align*} $$

In particular, by Lemma 2.4, we come to the following statement.

Corollary 2.5 If $K>0$ and $D_{p,f}(z)\leqslant K$ for a.a. $z\in \mathbb {B}$ , then $ \limsup \limits _{z\to 0} \, \frac {|f(z)|}{|z|}\geqslant K^{-\frac {1}{2-p}}\,.$

Next, we prove the following statement.

Theorem 2.6 Let $f: \mathbb {B}\to \mathbb {C}$ be a regular homeomorphism of the Sobolev class $W_{\mathrm {loc }}^{1,1}$ that possesses the N-property and normalized by $f(0)= 0$ , and let $1<p <2$ . Suppose that

$$ \begin{align*}\kappa_0=\liminf\limits_{\varepsilon\to 0} \left( \frac{1}{\pi\varepsilon^2}\int\limits_{B_{\varepsilon}}D_{p,f}^ {\frac{1}{p-1}}(z)\,dx\,dy\right)^{p-1}\,. \end{align*} $$

1) If $\kappa _0\in (0, \infty )$ , then

$$ \begin{align*}\limsup\limits_{z\to 0} \, \frac{|f(z)|}{|z|}\geqslant c_p \, \kappa_0^{-\frac{1}{2-p}}\,,\end{align*} $$

where $c_p$ is a positive constant depending on the parameter p.

2) If $\kappa _0=0$ , then

$$ \begin{align*}\limsup\limits_{z\to 0} \, \frac{|f(z)|}{|z|}=\infty\,.\end{align*} $$

Proof Let $\varepsilon \in \left (0, 1 \right )$ . By Proposition 2.1, for a.a. $r\in [0,1)$ ,

$$ \begin{align*}\frac{S'_f(r)\, dr }{S^{\frac{p}{2}}_f(r)}\geqslant \frac{2\pi^{\frac{2-p}{2}}}{r^{p-1}d_{p,f}(r) }\,dr; \end{align*} $$

therefore, integrating over the segment $[\frac {\varepsilon }{2}, \varepsilon ]$ , and arguing similarly to the proof of Lemma 2.3, we reach

$$ \begin{align*}S^{\frac{2-p}{2}}_f(\varepsilon)\geqslant S^{\frac{2-p}{2}}_f(\varepsilon)-S^{\frac{2-p}{2}}_f\left(\frac{\varepsilon}{2}\right) \geqslant \pi^{\frac{2-p}{2}}(2-p) \int\limits_{\frac{\varepsilon}{2}}^{\varepsilon} \frac{dr}{r^{p-1}d_{p,f}(r) }. \end{align*} $$

Hence,

(2.6) $$ \begin{align} S_f(\varepsilon)\geqslant \pi(2-p)^{\frac{2}{2-p}} \left(\int\limits_{\frac{\varepsilon}{2}}^{\varepsilon} \frac{dr}{r^{p-1}d_{p,f}(r) } \right)^{\frac{2}{2-p}} \,. \end{align} $$

Noting

$$ \begin{align*}\frac{\varepsilon}{2}=\int\limits_{\frac{\varepsilon}{2}}^{\varepsilon} \frac{1}{\left(\int\limits_{\gamma_{r}}D_{p,f}^{\frac{1}{p-1}}(z)\,|dz|\right)^{\frac{p-1}{p}}} \left(\int\limits_{\gamma_{r}}D_{p,f}^{\frac{1}{p-1}}(z)\,|dz|\right)^{\frac{p-1}{p}}dr, \end{align*} $$

one obtains by Holder’s inequality with exponents p and $p^{'}=p/(p-1),$

$$ \begin{align*}\left(\frac{\varepsilon}{2}\right)^{p}\leqslant\int\limits_{\frac{\varepsilon}{2}}^{\varepsilon} \frac{dr}{\left(\int\limits_{\gamma_{r}}D_{p,f}^{\frac{1}{p-1}}(z)\,|dz|\right)^{p-1}} \left(\int\limits_{\frac{\varepsilon}{2}}^{\varepsilon} \int\limits_{\gamma_{r}}D_{p,f}^{\frac{1}{p-1}}(z)\,|dz|\,dr\right)^{p-1}. \end{align*} $$

Due to (2.1), we rewrite the last inequality in the following form:

$$ \begin{align*}\left(\frac{\varepsilon}{2}\right)^{p}\leqslant \frac{1}{(2\pi)^{p-1}} \int\limits_{\frac{\varepsilon}{2}}^{\varepsilon}\frac{dr}{r^{p-1}d_{p,f}(r)} \left(\int\limits_{\frac{\varepsilon}{2}}^{\varepsilon}\int\limits_{\gamma_{r}}D_{p,f}^{\frac{1}{p-1}}(z)\,|dz|\,dr\right)^{p-1}. \end{align*} $$

Now, by the Fubini theorem, we have

$$ \begin{align*}\int\limits_{\frac{\varepsilon}{2}}^{\varepsilon}\frac{dr}{r^{p-1}d_{p,f}(r)}\geqslant (2\pi)^{p-1}\left(\frac{\varepsilon}{2}\right)^p\left(\, \int\limits_{A(0, \frac{\varepsilon}{2}, \varepsilon)}D_{p,f}^ {\frac{1}{p-1}}(z)\,dx\,dy\right)^{1-p}\,. \end{align*} $$

Since $ A(0, \frac {\varepsilon }{2}, \varepsilon )\subset B_{\varepsilon }$ ,

(2.7) $$ \begin{align} \int\limits_{\frac{\varepsilon}{2}}^{\varepsilon}\frac{dr}{r^{p-1}d_{p,f}(r)}\geqslant (2\pi)^{p-1}\left(\frac{\varepsilon}{2}\right)^p\left( \int\limits_{B_{\varepsilon}}D_{p,f}^ {\frac{1}{p-1}}(z)\,dx\,dy\right)^{1-p}. \end{align} $$

Combining (2.6) and (2.7), we obtain

$$ \begin{align*}S_f(\varepsilon)\geqslant \pi\left( \frac{2-p}{2} \right)^{\frac{2}{2-p}} \varepsilon^2 \left(\frac{1}{\pi\varepsilon^2}\int\limits_{B_{\varepsilon}}D_{p,f}^ {\frac{1}{p-1}}(z)\,dx\,dy\right)^{-\frac{2(p-1)}{2-p}} \,, \end{align*} $$

and by (2.5),

$$ \begin{align*}\frac{\mathcal{M}_f(\varepsilon)}{\varepsilon}\geqslant\sqrt{\frac{S_f(\varepsilon)}{\pi\varepsilon^2}}\geqslant c_p \left( \frac{1}{\pi\varepsilon^2}\int\limits_{B_{\varepsilon}}D_{p,f}^ {\frac{1}{p-1}}(z)\,dxdy\right)^{-\frac{p-1}{2-p}} \,, \end{align*} $$

where $c_p=\left (\frac {2-p}{2}\right )^{\frac {1}{2-p}}$ .

Thus,

$$ \begin{align*}\limsup\limits_{z\to 0} \, \frac{|f(z)|}{|z|}=\limsup\limits_{\varepsilon\to 0} \frac{\mathcal{M}_f(\varepsilon)}{\varepsilon}\geqslant c_p \, \kappa_0^{-\frac{1}{2-p}}. \end{align*} $$

This completes the proof of Theorem 2.6.

3 Application to nonlinear Beltrami equations

In this section, we present theorems on the asymptotic behavior of regular homeomorphic solutions to a nonlinear Beltrami equation of the form (1.6).

Theorem 3.1 Let $f: \mathbb {B}\to \mathbb {C}$ be a regular homeomorphic solution of equation (1.6) which belongs to Sobolev class $W_{\mathrm {loc }}^{1,2}$ , and normalized by $f(0) = 0$ . Assume that $C>0$ and the coefficient $\sigma : \mathbb {B}\to \mathbb {C}$ satisfies the following condition:

(3.1) $$ \begin{align} \int\limits_{\gamma_r} \frac{|\sigma(z) |^{m+2} }{\, \left(\mathrm{Im}\,\sigma(z)\right)^{m+1} }\, |dz| \leqslant C\, r^{2} \end{align} $$

for a.a. $r\in (0,1)$ . Then

(3.2) $$ \begin{align} \limsup\limits_{z\to 0} \, \frac{|f(z)|}{|z|}\geqslant \left(\frac{2\pi}{C}\right)^{\frac{1}{m}}\,. \end{align} $$

Proof Let $p=\frac {m+2}{m+1}$ , $1<p<2$ . It is well known that any homeomorphism $W_{\mathrm {loc }}^{1,2}$ possesses the N-property (see [Reference Martio and Ziemer24, Theorem 4.4]). Since f is a regular homeomorphic solution of equation (1.6), we get

$$ \begin{align*}J_f(re^{i\theta})= \frac{1}{r} \, \mathrm{Im}\, \left(\overline{f_r}\, f_\theta \right)=\frac{1}{r} \, |f_r|^{m+2} \, \mathrm{Im}\, \sigma(re^{i\theta})> 0 \ \text {a.e.}\end{align*} $$

and

$$ \begin{align*}D_{p,f}(re^{i\theta}) = \frac{|f_{\theta}(re^{i\theta})|^p}{r^p J_f(re^{i\theta})}= \frac{|\sigma (re^{i\theta}) |^{\frac{m+2}{m+1}} }{r^{\frac{1}{m+1}} \, \mathrm{Im}\,\sigma (re^{i\theta})}\,. \end{align*} $$

Therefore, in view of the condition (3.1), we have

$$ \begin{align*}d_{p,f}(r)= \left( \frac{1}{2\pi r^2} \int\limits_{\gamma_r}\, \frac{|\sigma(z) |^{m+2} }{\, \left(\mathrm{Im}\,\sigma(z)\right)^{m+1} } \, |dz| \right)^{\frac{1}{m+1}} \leqslant \left(\frac{C}{2\pi}\right)^{\frac{1}{m+1}} \end{align*} $$

for a.a. $r\in (0,1)$ .

Thus, by Lemma 2.4, we come to the estimate (3.2).

Corollary 3.2 Let $f: \mathbb {B}\to \mathbb {C}$ be a regular homeomorphic solution of equation (1.6) which belongs to Sobolev class $W_{\mathrm {loc }}^{1,2}$ , and normalized by $f(0) = 0$ and $K>0$ . Assume that the coefficient $\sigma : \mathbb {B}\to \mathbb {C}$ satisfies the following condition:

(3.3) $$ \begin{align} \frac{|\sigma (z) |^{m+2} }{\, \left(\mathrm{Im}\,\sigma(z)\right)^{m+1} }\, \leqslant K\, |z| \end{align} $$

for a.a. $z\in \mathbb {B}$ . Then

(3.4) $$ \begin{align} \limsup\limits_{z\to 0} \, \frac{|f(z)|}{|z|}\geqslant K^{-\frac{1}{m}}\,.\end{align} $$

Proof Indeed, in view of the condition (3.3), we have

$$ \begin{align*}\int\limits_{\gamma_r} \frac{|\sigma(z) |^{m+2} }{\, \left(\mathrm{Im}\,\sigma(z)\right)^{m+1} }\, |dz| \leqslant \int\limits_{\gamma_r} \, K|z|\, |dz|=2\pi K\, r^{2}\,.\end{align*} $$

Next, applying Theorem 3.1 with the parameter $C=2\pi K$ , we get the estimate (3.4).

We illustrate the last bound by the following example.

Example 3.3 Fix $k>0$ and consider the equation

(3.5) $$ \begin{align} f_\theta=\frac{i}{k^m}\,r |f_r|^m \, f_r \end{align} $$

in the unit disk $\mathbb {B}$ .

Let $f=kre^{i\theta }$ . Obviously, the mapping f belongs to the Sobolev class $W^{1,2}(\mathbb {B})$ . The partial derivatives of f with respect to $\theta $ and r are

$$ \begin{align*}f_\theta=ki\,re^{i\theta}, f_r=k\, e^{i\theta},\end{align*} $$

and $J_f(re^{i\theta })= \frac {1}{r} \, \mathrm {Im}\, \left (\overline {f_r}\, f_\theta \right )=k^2>0\,. $

Now, we show that the mapping $f=k\, re^{i\theta }$ is a solution of equation (3.5). Clearly,

$$ \begin{align*}\sigma=\frac{f_\theta}{|f_r|^m f_r}=\frac{i}{k^m}\,r \,.\end{align*} $$

Thus, (3.1) holds, since

$$ \begin{align*}\int\limits_{\gamma_r} \frac{|\sigma(z) |^{m+2} }{\, \left(\mathrm{Im}\,\sigma(z)\right)^{m+1} }\, |dz| =C \, r^2\,, \end{align*} $$

where $C=\frac {2\pi }{k^m}$ .

On the other hand, $ \lim \limits _{z\to 0} \, \frac {|f(z)|}{|z|}=k\,.$

Remark 3.4 The estimate (3.2) is sharp. It is easy to check that it is attained for a mapping $f=\left (\frac {2\pi }{C}\right )^{\frac {1}{m}}z$ .

By Theorem 2.6, similarly to the proof of Theorem 3.1, we obtain the following statement.

Theorem 3.5 Let $f\colon \mathbb {B}\to \mathbb {C}$ be a regular homeomorphic solution of equation (1.6) which belongs to Sobolev class $W^{1,2}_{\mathrm {loc}},$ and normalized by $f(0)=0.$ Suppose that

$$ \begin{align*}\sigma_{0}=\liminf\limits_{\varepsilon\rightarrow 0}\frac{1}{\pi \varepsilon^2}\int\limits_{B_{\varepsilon}} \frac{|\sigma(z)|^{m+2}}{|z| \left( \mathrm{Im}\, \sigma(z)\right)^{m+1}}\,dxdy. \end{align*} $$

1) If $\sigma _{0}\in (0,\infty )$ , then

$$ \begin{align*}\limsup\limits_{z\rightarrow 0}\frac{|f(z)|}{|z|}\geqslant c_{m}\,\sigma_{0}^{-\frac{1}{m}}, \end{align*} $$

where $c_{m}$ is a positive constant depending on the parameter $m.$

2) If $\sigma _{0}=0$ , then

$$ \begin{align*}\limsup\limits_{z\rightarrow 0}\frac{|f(z)|}{|z|}=\infty. \end{align*} $$

Example 3.6 Let $k>0$ and $\alpha \in (1,m+1)$ . Consider the equation

(3.6) $$ \begin{align} f_{\theta}=i k r^{\alpha}|f_{r}|^{m}f_{r} \end{align} $$

in the unit disk $\mathbb {B}.$

The mapping

$$ \begin{align*}f=k^{-\frac{1}{m}}\beta^{\frac{m+1}{m}}r^{\frac{m+1-\alpha}{m}} e^{i\theta}\,, \quad \beta=\frac{m}{m+1-\alpha}\,,\end{align*} $$

belongs to the Sobolev class $W^{1,2}_{\mathrm {loc}}(\mathbb {B})$ . Its partial derivatives with respect to r and $\theta $ are

$$ \begin{align*}f_{\theta}=ik^{-\frac{1}{m}}\beta^{\frac{m+1}{m}}r^{\frac{m+1-\alpha}{m}} e^{i\theta},\quad f_{r}=k^{-\frac{1}{m}}\beta^{\frac{1}{m}}r^{\frac{1-\alpha}{m}} e^{i\theta}\,.\end{align*} $$

It is easy to see that the mapping $f=k^{-\frac {1}{m}}\beta ^{\frac {m+1}{m}}r^{\frac {m+1-\alpha }{m}} e^{i\theta }$ is a regular homeomorphic solution of equation (3.6). Clearly,

$$ \begin{align*}\sigma=\frac{f_{\theta}}{|f_{r}|^{m}f_{r}}=i k r^{\alpha}.\end{align*} $$

The condition $\sigma _0=0$ in Theorem 3.5 is fulfilled, since

$$ \begin{align*}\lim\limits_{\varepsilon\rightarrow 0}\frac{1}{\pi \varepsilon^2}\int\limits_{B_{\varepsilon}} \frac{|\sigma(z)|^{m+2}}{|z| \left( \mathrm{Im}\, \sigma(z)\right)^{m+1}}\,dxdy =0.\end{align*} $$

By a direct calculation, $|f(z)|/|z|\to \infty $ as $z\to 0$ .

References

Adamowicz, T., On $p$ -harmonic mappings in the plane . Nonlinear Anal. 71(2009), nos. 1–2, 502511.CrossRefGoogle Scholar
Andreian Cazacu, C., Influence of the orientation of the characteristic ellipses on the properties of the quasiconformal mappings . In: Proceedings of the Romanian-Finnish seminar on Teichmüller spaces and quasiconformal mappings. Braşov 1969, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest, 1971, pp. 6585.Google Scholar
Aronsson, G., On certain $p$ -harmonic functions in the plane . Manuscripta Math. 61(1988), no. 1, 79101.CrossRefGoogle Scholar
Astala, K., Clop, A., Faraco, D., Jääskeläinen, J., and Koski, A., Nonlinear Beltrami operators, Schauder estimates and bounds for the Jacobian . Ann. Inst. H. Poincaré Anal. Non Linéaire 34(2017), no. 6, 15431559.Google Scholar
Astala, K., Iwaniec, T., and Martin, G., Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series, 48, Princeton University Press, Princeton, NJ, 2009.Google Scholar
Bojarski, B., Gutlyanskiĭ, V., Martio, O., and Ryazanov, V., Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane. EMS Tracts in Mathematics, 19, European Mathematical Society, Zürich, 2013.CrossRefGoogle Scholar
Bojarski, B. and Iwaniec, T., p-harmonic equation and quasiregular mappings . In: Partial differential equations (Warsaw, 1984), Banach Center Publications, 19, PWN, Warsaw, 1987, pp. 2538.Google Scholar
Carozza, M., Giannetti, F., di Napoli, A. P., Sbordone, C., and Schiattarella, R., Bi-Sobolev mappings and ${K}_p$ -distortions in the plane . J. Math. Anal. Appl. 457(2018), no. 2, 12321246.CrossRefGoogle Scholar
Golberg, A., Directional dilatations in space . Complex Var. Elliptic Equ. 55(2010), nos. 1–3, 1329.CrossRefGoogle Scholar
Golberg, A., Extremal bounds of Teichmüller–Wittich–Belinskiĭ type for planar quasiregular mappings . In: New trends in approximation theory, Fields Institute Communications, 81, Springer, New York, 2018, pp. 173199.CrossRefGoogle Scholar
Golberg, A. and Salimov, R., Nonlinear Beltrami equation . Complex Var. Elliptic Equ. 65(2020), no. 1, 621.CrossRefGoogle Scholar
Golberg, A., Salimov, R., and Stefanchuk, M., Asymptotic dilation of regular homeomorphisms . Compl. Anal. Oper. Theory 13(2019), no. 6, 28132827.CrossRefGoogle Scholar
Guo, C.-Y. and Kar, M., Quantitative uniqueness estimates for $p$ -Laplace type equations in the plane . Nonlinear Anal. 143(2016), 1944.CrossRefGoogle Scholar
Gutlyanskiĭ, V., Ryazanov, V., Srebro, U., and Yakubov, E., On recent advances in the Beltrami equations . Ukr. Mat. Visn. 7(2010), no. 4, 467515; reprinted in J. Math. Sci. (N.Y.) 175(2011), no. 4, 413–449.Google Scholar
Gutlyanskiĭ, V., Ryazanov, V., Srebro, U., and Yakubov, E., The Beltrami equation. A geometric approach. Developments in Mathematics, 26, Springer, New York, 2012.CrossRefGoogle Scholar
Ikoma, K., On the distortion and correspondence under quasiconformal mappings in space . Nagoya Math. J. 25(1965), 175203.CrossRefGoogle Scholar
Kruschkal, S. L. and Kühnau, R., Quasikonforme Abbildungen-neue Methoden und Anwendungen. German . In: Quasiconformal mappings – new methods and applications with English, French and Russian summaries, Teubner-Texte zur Mathematik (Teubner Texts in Mathematics), 54, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1983.Google Scholar
Kühnau, R., Minimal surfaces and quasiconformal mappings in the mean . Zbir. Prats. Inst. Mat. NANU 7(2010), no. 2, 104131.Google Scholar
Lavrent’ev, M. A., A general problem of the theory of quasi-conformal representation of plane regions . Mat. Sbornik N.S. 21(1947), no. 63, 285320 (in Russian).Google Scholar
Lavrent’ev, M. A., The variational method in boundary-value problems for systems of equations of elliptic type . Izdat. Akad. Nauk SSSR, Sibirskoe otdelenie, Moskva (1962), 136 (Russian).Google Scholar
Lavrent’ev, M. A. and Šabat, B. V., Geometrical properties of solutions of non-linear systems of partial differential equations . Dokl. Akad. Nauk SSSR (N.S.) 112(1957), 810811 (in Russian).Google Scholar
Lehto, O. and Virtanen, K. I., Quasiconformal mappings in the plane. 2nd ed., Die Grundlehren der mathematischen Wissenschaften, 126, Springer, New York–Heidelberg, 1973, translated from the German by K. W. Lucas.CrossRefGoogle Scholar
Martio, O., Ryazanov, V., Srebro, U., and Yakubov, E., Moduli in modern mapping theory. Springer Monographs in Mathematics, Springer, New York, 2009.Google Scholar
Martio, O. and Ziemer, W. P., Lusin’s condition (N) and mappings with nonnegative Jacobians . Michigan Math. J. 39(1992), no. 3, 495508.CrossRefGoogle Scholar
Romanov, A. S., Capacity relations in a planar quadrilateral . Sibirsk. Mat. Zh. 49 (2008), no. 4, 886897 (in Russian), translation in Sib. Math. J. 49(2008), no. 4, 709–717.Google Scholar
Ryazanov, V., Srebro, U., and Yakubov, E., On ring solutions of Beltrami equations . J. Anal. Math. 96(2005), 117150.CrossRefGoogle Scholar
Šabat, B. V., Geometric interpretation of the concept of ellipticity . Uspehi Mat. Nauk. 12(1957), no. 6(78), 181188 (in Russian).Google Scholar
Šabat, B. V., On the notion of derivative system according to M. A. Lavrent’ev . Dokl. Akad. Nauk SSSR 136(1961), 12981301 (in Russian), translated as Soviet Math. Dokl. 2(1961), 202–205.Google Scholar
Saks, S., Theory of the integral, Dover, New York, 1964.Google Scholar
Salimov, R. and Stefanchuk, M., Finite Lipschitzness of regular solutions to nonlinear Beltrami equation . Complex Var. Elliptic Equ., published online 12.01.2023. https://doi.org/10.1080/17476933.2023.2166498 CrossRefGoogle Scholar
Salimov, R. R. and Stefanchuk, M. V., On the local properties of solutions of the nonlinear Beltrami equation . J. Math. Sci. 248(2020), 203216.CrossRefGoogle Scholar
Salimov, R. R. and Stefanchuk, M. V., Logarithmic asymptotics of the nonlinear Cauchy–Riemann–Beltrami equation . Ukr. Math. J. 73(2021), 463478.CrossRefGoogle Scholar
Salimov, R. R. and Stefanchuk, M. V., Nonlinear Beltrami equation and asymptotics of its solution . J. Math. Sci. 264(2022), no. 4, 441454.CrossRefGoogle Scholar
Sevost’yanov, E. A., On quasilinear Beltrami-type equations with degeneration . Mat. Zametki 90(2011), no. 3, 445453 (in Russian); translation in Math. Notes 90(2011), no. 3–4, 431–438.Google Scholar
Srebro, U. and Yakubov, E., Beltrami equation . In: Handbook of complex analysis: geometric function theory. Vol. 2, Elsevier Science B. V., Amsterdam, 2005, pp. 555597.CrossRefGoogle Scholar