Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-30T16:11:49.500Z Has data issue: false hasContentIssue false

REVERSED HARDY–LITTLEWOOD–PÓLYA INEQUALITIES WITH FINITE TERMS

Published online by Cambridge University Press:  03 February 2023

HAIYAN HAN
Affiliation:
Department of Teacher Education, Maanshan Teacher’s College, Maanshan, Anhui 243041, PR China e-mail: 349818273@qq.com
YUTIAN LEI*
Affiliation:
Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, PR China
Rights & Permissions [Opens in a new window]

Abstract

We prove a reversed Hardy–Littlewood–Pólya inequality with finite terms. We also give the limit of the best constant.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

Let $a_i, b_i \geq 0$ ( $i=1,2,\ldots $ ). The Hardy–Littlewood–Pólya inequality [Reference Hardy, Littlewood and Pólya3, Theorem 381, page 288] states that

(1.1) $$ \begin{align} \sum_{i,j=1,\,i \neq j}^\infty \frac{a_ib_j}{|i-j|^\lambda} \leq K_{p,q}\bigg(\sum_{i=1}^\infty a_i^p\bigg)^{1/p} \bigg(\sum_{i=1}^\infty b_i^q\bigg)^{1/q}, \end{align} $$

where $p,q>1$ , $1/p+1/q>1$ , $\lambda =2-(1/p+1/q)$ . In 2015, Huang, Li and Yin used the Hardy–Littlewood–Sobolev inequality [Reference Lieb7] to generalise (1.1) to the case of higher dimensions. In addition, they also proved that the best constant can be approximated by the corresponding functional with finite terms [Reference Huang, Li and Yin4].

In 2015, Dou and Zhu in [Reference Dou and Zhu2] established a reversed Hardy–Littlewood–Sobolev inequality:

$$ \begin{align*} \bigg|\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\frac{f(x)g(y)\,dx\,dy}{|x-y|^\lambda} \bigg| \geq C\|f\|_{L^p(\mathbb{R}^n)}\|g\|_{L^q(\mathbb{R}^n)}\quad \mbox{for all } f \in L^p(\mathbb{R}^n), g \in L^q(\mathbb{R}^n), \end{align*} $$

where $n \geq 1$ and $p,q \in (n/(n-\lambda ),1)$ satisfy $1/p+1/q+\lambda /n=2$ . In addition, they proved the best constant is attained. From this inequality, a reversed discrete inequality in higher dimensions was also deduced in [Reference Lei, Li and Tang5]:

$$ \begin{align*} \sum_{i,j \in \mathbb{Z}^n} \frac{|f_i||g_j|}{|i-j|^{\lambda}} +\sum_{j \in \mathbb{Z}^n}|f_j||g_j| \geq C\|f\|_{l^p}\|g\|_{l^q} \quad \mbox{for all}\ (f,g) \in l^p(\mathbb{Z}^n) \times l^q(\mathbb{Z}^n), \end{align*} $$

where $f=(f_i)_{i \in \mathbb {Z}^n}$ , $g=(g_j)_{j \in \mathbb {Z}^n}$ , $\lambda <0$ , $n/(n-\lambda )<p,q<1$ and $1/p+1/q+\lambda /n \leq 2$ . When $n=1$ and replacing $\mathbb {Z}^n$ by $\mathbb {N}$ , we denote the best constant by

(1.2) $$ \begin{align} L_{p,q,\lambda}:=\inf\bigg\{\sum_{i,j =1}^\infty \frac{|f_i||g_j|}{|i-j|^{\lambda}} +\sum_{j =1}^\infty |f_j||g_j|: \|f\|_{l^p}=\|g\|_{l^q}=1\bigg\}. \end{align} $$

In 2011, Li and Villavert [Reference Li and Villavert6] proved the Hardy–Littlewood–Pólya inequality with finite terms:

(1.3) $$ \begin{align} \sum_{i,j=1,\,i \neq j}^N \frac{a_ib_j}{|i-j|} \leq K_{N}\bigg(\sum_{i=1}^N a_i^2\bigg)^{1/2} \bigg(\sum_{i=1}^N b_i^2\bigg)^{1/2}, \end{align} $$

where the constant $K_N$ satisfies

$$ \begin{align*} 2\ln N-2 \leq K_N \leq 2(\ln N-\ln 2)+2. \end{align*} $$

Comparing (1.3) with (1.1) for $p=q=2$ shows that (1.3) is an inequality in the critical case. In contrast to the estimate of $K_N$ above, the best constant for the upper-critical inequality is bounded with respect to N [Reference Huang, Li and Yin4, Lemma 2.2]. The bounds for the best constant are helpful in giving a better understanding of the Coulomb energy in the Thomas–Fermi model describing electron gas and N-body systems [Reference Lieb, Feng, Klauder and Strayer8]. The results in higher dimensions can be found in [Reference Cheng and Li1].

In this paper, we always assume $a_i,b_i \geq 0$ ( $i=1,2,\ldots ,N$ ). We will prove the following reversed Hardy–Littlewood–Pólya inequality with finite terms.

Theorem 1.1. Let $\lambda <0$ and $p,q \in (0,1)$ satisfy $1/p+1/q \leq 2-\lambda $ . Then we can find a constant $L>0$ which only depends on $p,q,\lambda ,N$ such that

(1.4) $$ \begin{align} \sum_{i,j=1,\,i \neq j}^N \frac{a_ib_j}{|i-j|^\lambda} +\sum_{i=1}^N a_ib_i \geq L\bigg(\sum_{i=1}^N a_i^p\bigg)^{1/p} \bigg(\sum_{i=1}^N b_i^q\bigg)^{1/q}. \end{align} $$

Denote the best constant in (1.4) by

(1.5) $$ \begin{align} L_{p,q,\lambda,N}:=\min\bigg\{\sum_{i,j=1,\,i \neq j}^N\frac{a_ib_j}{|i-j|^\lambda} +\sum_{i=1}^N a_ib_i: \sum_{i=1}^N a_i^p=\sum_{i=1}^N b_i^q=1\bigg\}. \end{align} $$

Theorem 1.2. Let $\lambda <0$ and $p,q \in ((1-\lambda )^{-1},1)$ satisfy $1/p+1/q \leq 2-\lambda $ . Then $L_{p,q,\lambda ,N} \to L_{p,q,\lambda }$ when $N \to \infty $ .

2 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1

Write $a=(a_1,a_2,\ldots ,a_N)$ and $b=(b_1,b_2,\ldots ,b_N)$ . Set

$$ \begin{align*} J(a,b)=\sum_{i,j=1,\,i \neq j}^N\frac{a_ib_j}{|i-j|^\lambda} +\sum_{i=1}^N a_ib_i -L_{p,q,\lambda,N}\bigg(\sum_{i=1}^N a_i^p\bigg)^{1/p} \bigg(\sum_{i=1}^N b_i^q\bigg)^{1/q}. \end{align*} $$

Clearly, $J(a,b) \geq 0$ for all $a,b \in \mathbb {R}_+^N:= \{x=(x_1,x_2,\ldots ,x_N) : x_i \geq 0, i=1,2,\ldots ,N\}$ . However,

$$ \begin{align*} \mathbb{S}(N):=\bigg\{(a,b): \sum_{i=1}^N a_i^p =\sum_{i=1}^N b_i^q=1\bigg\} \end{align*} $$

is compact in $\mathbb {R}_+^N \times \mathbb {R}_+^N$ and hence the minimisation problem (1.5) has solutions in $\mathbb {S}(N)$ . Thus, we can find $(a(N),b(N)) \in \mathbb {S}(N)$ such that $J(a(N),b(N)) =0$ . We call $(a(N),b(N))$ the minimiser of J. Therefore, both the partial derivatives of J are equal to zero at $(a(N),b(N))$ . Namely,

$$ \begin{align*} \bigg[\frac{d}{dt} J(a(N)+ta,b(N))\bigg]_{t=0}= \bigg[\frac{d}{dt} J(a(N),b(N)+tb)\bigg]_{t=0}=0 \end{align*} $$

for any $(a,b) \in \mathbb {R}_+^N \times \mathbb {R}_+^N$ . From this result, by simple calculation, we see that

(2.1) $$ \begin{align} \begin{cases} \displaystyle L_{p,q,\lambda,N}\ a(N)_i^{p-1} =\sum_{j=1}^N\frac{b(N)_j}{|i-j|^\lambda}+b(N)_i\\[3mm] \displaystyle L_{p,q,\lambda,N}\ b(N)_i^{q-1} =\sum_{j=1}^N\frac{a(N)_j}{|i-j|^\lambda}+a(N)_i. \end{cases} \end{align} $$

Noting $(a(N),b(N))\neq (0,0)$ (because $(a(N),b(N))\in \mathbb {S}(N)$ ), from (2.1) we see that

$$ \begin{align*} \min\{a(N)_i,b(N)_i\}>0 \quad \mbox{for}\ 1 \leq i \leq N. \end{align*} $$

Therefore, $L_{p,q,\lambda ,N}>0$ .

Next, we prove that $L_{p,q,\lambda ,N}$ has a positive lower bound which is independent of N. Multiplying (2.1) $_1$ by $a(N)_i$ and summing from $1$ to N gives

(2.2) $$ \begin{align} L_{p,q,\lambda,N}\sum_{i=1}^N a(N)_i^p = \sum_{i,j=1}^N \frac{a(N)_i b(N)_j}{|i-j|^\lambda}+\sum_{i=1}^N a(N)_ib(N)_i. \end{align} $$

Write

$$ \begin{align*}\begin{cases} \bar{a}(N)=(a(N)_1,a(N)_2,\ldots,a(N)_N,0,\ldots),\\ \bar{b}(N)=(b(N)_1,b(N)_2,\ldots,b(N)_N,0,\ldots). \end{cases} \end{align*} $$

Since $(a(N),b(N)) \in \mathbb {S}(N)$ ,

$$ \begin{align*} (\bar{a}(N),\bar{a}(N)) \in \mathbb{S}:=\{(a,b): \|a\|_{l^p}=\|b\|_{l^q}=1\}. \end{align*} $$

From (2.2) and (1.2), it follows that

(2.3) $$ \begin{align} L_{p,q,\lambda,N}=L_{p,q,\lambda,N}\sum_{i=1}^N a(N)_i^p =\sum_{i,j=1}^\infty \frac{\bar{a}(N)_i \bar{b}(N)_j}{|i-j|^\lambda} +\sum_{i=1}^\infty \bar{a}(N)_i\bar{b}(N)_i \geq L_{p,q,\lambda}. \end{align} $$

Therefore, $L_{p,q,\lambda ,N}>0$ with the lower bound (2.3). This proves (1.4).

Remark 2.1. We claim that

$$ \begin{align*} \lim_{N \to \infty}\min_{1 \leq i \leq N} \{a(N)_i,b(N)_i\}=0. \end{align*} $$

Without loss of generality, we can assume $a(N)_1=\min _{1 \leq i \leq N} \{a(N)_i,b(N)_i\}$ . From (2.1),

(2.4) $$ \begin{align} L_{p,q,\lambda,N} &=a(N)_1^{1-p}\bigg(\sum_{j=2}^N\frac{b(N)_j}{(\,j-1)^\lambda}+b(N)_i\bigg) \notag \\ &\geq a(N)_1^{2-p}\bigg(\sum_{j=2}^N \frac{1}{(\,j-1)^\lambda} +1\bigg) =a(N)_1^{2-p}\bigg(\sum_{j=1}^{N-1} j^{-\lambda}+1\bigg) \notag \\ &\geq a(N)_1^{2-p}\bigg(\int_1^{N} (r-1)^{-\lambda}\,dr+1\bigg) =a(N)_1^{2-p}\bigg(\frac{(N-1)^{1-\lambda}}{1-\lambda}+1\bigg). \end{align} $$

However, since $\mathbb {S}(N) \subset \mathbb {S}(N+1)$ , it follows that $L_{p,q,\lambda ,N}$ is nonincreasing with respect to N. Therefore, $L_{p,q,\lambda ,N} \leq L_{p,q,\lambda ,1}$ . Taking $a_1=b_1=1$ , we see that $(a_1,b_1) \in \mathbb {S}(1)$ and hence $L_{p,q,\lambda ,1} \leq a_1b_1=1$ . This gives the upper bound

(2.5) $$ \begin{align} L_{p,q,\lambda,N} \leq 1. \end{align} $$

Combining (2.5) with (2.4) yields

$$ \begin{align*} a(N)_1^{2-p} = O(N^{\lambda-1}) \quad (N \to \infty). \end{align*} $$

This implies our claim.

Proof of Theorem 1.2

By (1.2), we can find a minimising sequence $(a^{(m)},b^{(m)}) \in \mathbb {S}$ such that

$$ \begin{align*} \sum_{i,j=1,\,i \neq j}^\infty \frac{a_i^{(m)}b_j^{(m)}}{|i-j|^\lambda} +\sum_{i=1}^\infty a_i^{(m)}b_i^{(m)} \leq L_{p,q,\lambda}+\frac{1}{m}. \end{align*} $$

The convergence of this series implies

(2.6) $$ \begin{align} \sum_{i,j=1,\,i \neq j}^\infty \frac{a_{i}^{(m),N_m}b_j^{(m),N_m}}{|i-j|^\lambda} +\sum_{i=1}^\infty a_i^{(m),N_m}b_i^{(m),N_m} \leq L_{p,q,\lambda}+\frac{2}{m} \end{align} $$

when $N_m>m$ is sufficiently large. Here,

$$ \begin{align*} \begin{cases} a_{i}^{(m),N_m}=a_{i}^{(m)} & \mbox{when} \ i \leq N_m,\\ a_{i}^{(m),N_m}=0 & \mbox{when} \ i> N_m, \end{cases} \end{align*} $$

and $b_{i}^{(m),N_m}$ is defined by the same truncation. Since $(a^{(m)},b^{(m)}) \in \mathbb {S}$ ,

(2.7) $$ \begin{align} \|a^{(m),N_m}\|_{l^p}^p \geq 1-\frac{1}{m}, \quad \|b^{(m),N_m}\|_{l^q}^q \geq 1-\frac{1}{m}, \end{align} $$

when $N_m>m$ is sufficiently large. Therefore, noting that

$$ \begin{align*} \bigg(\frac{a^{(m),N_m}}{\|a^{(m),N_m}\|_{l^p}}, \frac{b^{(m),N_m}}{\|b^{(m),N_m}\|_{l^q}}\bigg) \in \mathbb{S}(N_m), \end{align*} $$

from (1.5), (2.6) and (2.7), we deduce

$$ \begin{align*} L_{p,q,\lambda,N_m} \leq \bigg(L_{p,q,\lambda}+\frac{2}{m}\bigg) \bigg(1-\frac{1}{m}\bigg)^{-({1}/{p}+{1}/{q})} \end{align*} $$

for large $N_m$ . Letting $m \to \infty $ and combining with (2.3) completes the proof.

Acknowledgement

The authors thank the anonymous referee very much for the useful suggestions.

Footnotes

This research was supported by NSFC (No. 11871278) of China.

References

Cheng, Z. and Li, C., ‘An extended discrete Hardy–Littlewood–Sobolev inequality’, Discrete Contin. Dyn. Syst. 34 (2014), 19511959.10.3934/dcds.2014.34.1951CrossRefGoogle Scholar
Dou, J. and Zhu, M., ‘Reversed Hardy–Littlewood–Sobolev inequality’, Int. Math. Res. Not. IMRN 2015(19) (2015), 96969726.10.1093/imrn/rnu241CrossRefGoogle Scholar
Hardy, G. H., Littlewood, J. E. and Pólya, G., Inequalities, 2nd edn (Cambridge University Press, Cambridge, 1952).Google Scholar
Huang, G., Li, C. and Yin, X., ‘Existence of the maximizing pair for the discrete Hardy–Littlewood–Sobolev inequality’, Discrete Contin. Dyn. Syst. 35 (2015), 935942.10.3934/dcds.2015.35.935CrossRefGoogle Scholar
Lei, Y., Li, Y. and Tang, T., ‘Critical conditions and asymptotics for discrete systems of the Hardy–Littlewood–Sobolev type’, Tohoku Math. J., to appear.Google Scholar
Li, C. and Villavert, J., ‘An extension of the Hardy–Littlewood–Pólya inequality’, Acta Math. Sci. 31(6) (2011), 22852288.10.1016/S0252-9602(11)60400-1CrossRefGoogle Scholar
Lieb, E., ‘Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities’, Ann. of Math. (2) 118 (1983), 349374.10.2307/2007032CrossRefGoogle Scholar
Lieb, E., ‘Coherent states as a tool for obtaining rigorous bounds’, in: Coherent States, Past, Present and Future: Proceedings of the International Symposium, Oak Ridge, 1993 (eds. Feng, D. H., Klauder, J. R. and Strayer, M. R.) (World Scientific, Singapore, 1994), 267278.Google Scholar