Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T12:50:17.359Z Has data issue: false hasContentIssue false

Voltage-gated calcium channels in Pleurodeles oocytes: classification, modulation and functional roles

Published online by Cambridge University Press:  15 January 2010

Halima Ouadid-Ahidouch*
Affiliation:
Centre de Biologie Cellulaire, Laboratoire de Physiologie Cellulaire, SN3, USTL 59655, Villeneuve d'Ascq, France
*
Dr H. Ouadid-Ahidouch. Fax: (+33) 3 20 43 40 66. e-mail: ouadid.halima@univ-lillel.fr.

Summary

In unfertilised Pleurodeles oocytes, two distinct types of high voltage-activated Ca2+ channels are expressed: a slowly inactivating Ca2+ channel and a transient one. The first is dihydropyridine-sensitive and is referred to as the L-type Ca2+ channel. The transient channel is highly sensitive to Ni2+. Phosphorylation through protein kinases G and A facilitates and inhibits the L-type Ca2+ channel respectively. The transient type channel is insensitive to stimulation by protein kinases (A and G). The functional expression of L-type and transient Ca2+ channels is modulated by the two maturation seasons. The transient Ca2+ currents are only observed during the resting season, while the L-type current is observed either alone during the breeding season or in association with the transient current during the resting season. Moreover, the current density of the L-type Ca2+ channel is much greater during the breeding season than the resting season. Thus, the wide distribution of L-type Ca2+ channels in Pleurodeles oocytes during the two seasons suggests that the roles of these channels may be important in the regulation of the maturation process.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, B.A. & Beam, K.G. (1989). A novel calcium current in dysgenic skeletal muscle, J. Gen. Physiol. 94, 429–44.CrossRefGoogle ScholarPubMed
Akaiké, N., Kanaide, H., Kuga, T., Nakamura, M., Sadoshima, J. & Tomoike, H. (1989). Low-voltage-activated calcium current in rat aorta smooth muscle cells in primary culture, J. Physiol. (lond.) 416, 141–60.CrossRefGoogle ScholarPubMed
Alvarez, J.L. & Vassort, G. (1992). Properties of the low threshold Ca current in single frog atrial cardiomyocytes: a comparison with the high threshold Ca current, J. Gen. Physiol. 100, 519–45.CrossRefGoogle ScholarPubMed
Anwyl, R. (1991). Modulation of vertebrate neuronal calcium channels by transmitters. Brain Res. Rev. 16, 265–81.CrossRefGoogle ScholarPubMed
Arreola, J., Calvo, J., Garcia, M.C. & Sanchez, J.A. (1987). Modulation of calcium channels of twitch skeletal muscle fibers of the frog by adrenaline and cyclic adenosine monophosphate, J. Physiol. (Lond.) 393, 307–30.CrossRefGoogle Scholar
Baud, C., Kado, R.T. & Marcher, K. (1982). Sodium channels induced by depolarization of the Xenopus laevis oocyte. Proc. Nati Acad. Sci. USA 79, 3188–92.CrossRefGoogle ScholarPubMed
Bean, B.R. (1985). Two kinds of calcium channels in canine atrial cells, J. Gen. Physiol. 86, 130.CrossRefGoogle ScholarPubMed
Bean, B.R. (1989). Classes of calcium channels in vertebrate cells. Annu. Rev. Physiol. 51, 367–84.CrossRefGoogle ScholarPubMed
Benham, C.D., Hess, P. & Tsien, R.W. (1987). Two types of calcium channels in single smooth muscle cells from rabbit ear artery studied with whole-cell and single channel recording. Gire. Res. 61, 1016.Google Scholar
Bosma, M.B. & Moody, W.J. (1990). Macrocropic and single-channel studies of two Ca2+ channel types in oocytes of the ascidian Ciona intestinalis. J. Membr. Biol. 114, 231–43.CrossRefGoogle ScholarPubMed
Bourinet, E., Fournier, F., Nargeot, J. & Chamet, P. (1992). endogenous Xenopus oocyte Ca-channels are regulated by protein kinases A and C. FEBS Lett. 299, 59.CrossRefGoogle ScholarPubMed
Catteral, W.A. (1995). Structure and function of voltagegated ion channels. Annu. Rev. Biochem. 64, 493531.CrossRefGoogle Scholar
Cognard, C., Lazdunski, M. & Romey, G. (1986). Different types of calcium channels in mammalian skeletal muscle cells in culture. Proc. Nati. Acad. Sci. USA 83, 517–21.CrossRefGoogle ScholarPubMed
Curtis, B.M. & Caterrall, W.A. (1985). Phosphorylation of the calcium by cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 82, 2528–32.CrossRefGoogle ScholarPubMed
Dale, B., Talevi, R. & Defelice, J. (1991). L-type Ca2+ currents in ascidian eggs. Exp. Cell Res. 192, 302–6.CrossRefGoogle ScholarPubMed
Dolphin, A.C. (1995). Voltage-dependent calcium channels and their modulation by neurotransmitters and G proteins. Exp. Physiol. 80, 136.CrossRefGoogle ScholarPubMed
Ellinor, P.T., Zhang, J.F., Randall, A.D., Zhou, M., Schwartz, T.L., Tsien, R.W. & Horne, W.A. (1993). Functional expression of a rapidly inactivating neuronal calcium channel. Nature 363, 455–8.CrossRefGoogle ScholarPubMed
Fischmeister, R. & Hartzeil, H.C. (1986). Cyclic guanosine 3′,5′-monophosphate regulates the calcium current in single cells from frog ventricle, J. Physiol. (lond.) 387, 453–72.CrossRefGoogle Scholar
Fleckenstein, A. (1983). Calcium antagonism in heart and smooth muscle. New York: Wiley.Google Scholar
Flockerzi, V., Oeken, H.J. & Hofmann, F. (1986a). Purification of a functional receptor for calcium-channel blockers from rabbit skeletal muscle microsomes. Eur. J. Biochem. 161, 217–24.CrossRefGoogle ScholarPubMed
Flockerzi, V., Oeken, H.J., Hofmann, F., Pelzer, D., Cavalle, A. & Trautwein, W. (1986b). Purified dihydropyridine-binding site from skeletal muscle t-rubules as a functional calcium channel. Nature 332, 66–8.CrossRefGoogle Scholar
Fox, A.P., Nowycky, M. & Tsien, R.W. (1987a). Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J. Physiol. (hond.) 394, 149–72.CrossRefGoogle ScholarPubMed
Fox, A.P., Nowycky, M. & Tsien, R.W. (1987b). Single channel recording of three types of calcium channels in chick sensory neurones, J. Physiol. (lond.) 394, 173200.CrossRefGoogle ScholarPubMed
Haddad, G.E., Sperelakis, N. & Bkaily, G. (1995). Regulation of the calcium slow channel by cyclic GMP dependent protein kinase in chick heart cells. Mol. Cell. Biochem. 148, 8994.CrossRefGoogle ScholarPubMed
Hagiwara, S., Ozawa, S. & Sand, O. (1975). Voltage clamp analysis of two inward current mechanisms in the egg cell membrane of a starfish, J. Gen. Physiol. 65, 617–44.CrossRefGoogle ScholarPubMed
Hamill, O.P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F.J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85100.CrossRefGoogle ScholarPubMed
Hartzell, H.C. (1989). Regulation of cardiac ion channels by calecholamines, acetylcholine and second messenger systems. Prog. Biophys. Mol. Biol. 52, 165241.CrossRefGoogle Scholar
Hasse, H., Karczewski, P., Bechert, R. & Krause, E.G. (1993). Phosphorylation of the L type calcium channel beta subunit is involved in beta-adrenergic signal transduction in canine myocardium. FEBS Lett. 335, 217–22.CrossRefGoogle Scholar
Hess, P., Lansman, J.B., Nilius, B. & Tsien, R.W. (1986). Calcium channel types in cardiac myocytes: modulation by dihydropyridines and beta-adrenergic stimulation. J. Cardiovasc. Pharmacol. 8, S1121.CrossRefGoogle ScholarPubMed
Horne, W.A., Ellinor, P.T., Inman, I., Zhou, M., Tsien, R.W. & Schwartz, T.L. (1993). Molecular diversity of Ca2+ channel alpha 1 subunit from the marine ray Discqpyge ommata. Proc. Nati. Acad. Sci. USA 90, 3787–91.CrossRefGoogle Scholar
Hosey, M.M. & Lazdunski, M. (1988). Calcium channels: molecular pharmacology, structure and regulation. J.Membr. Biol. 104, 81105.CrossRefGoogle ScholarPubMed
Jahn, H., Nastainczyk, W., Röhrkasten, A., Schneider, T. & Hofmann, F. (1988). Site-specific phosphorylation of the purified receptor for calcium-channel blockers by cAMP-and cGMP-protein kinases, protein kinase C, calmodulin-dependent protein kinase II and casein kinase II. Eur. J. Biochem. 178, 535–42.CrossRefGoogle Scholar
Kameyama, M., Hofmann, F. & Trautwein, W. (1985). On the mechanism of β-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflügers Arch. 405, 285–93.CrossRefGoogle ScholarPubMed
Kazazoglou, T., Schmid, A., Renaud, J.F. & Lazdunski, M. (1983). Ontogenic appearance of Ca2+ channels characterized as binding sites for nitrendipine during development of nervous, skeletal and cardiac muscle systems in the rat. FEBS Lett. 164, 75–9.CrossRefGoogle ScholarPubMed
Kokate, T.G., Heiny, J.A. & Sperelakis, N. (1993). Stimulation of the slow calcium current in bullfrog skeletal muscle fibers by cAMP and cGMP. Am. J. Physiol. 265, C47–C53.CrossRefGoogle ScholarPubMed
Kokubun, S. & Reuter, H. (1984). Dihydropyridine derivatives prolong the open state of Ca channels in cultured cardiac cells. Proc. Nati. Acad. Sci. USA 81, 4824–7.CrossRefGoogle ScholarPubMed
Komuro, H. & Rakic, P. (1992). Selective role of N-type calcium channels in neuronal migration. Science 257, 806–9.CrossRefGoogle ScholarPubMed
Krizanova, O. (1996). Structural implication in the function of L-type voltage-dependent calcium channels. Gen. Physiol. Biophys. 15, 7987.Google ScholarPubMed
Kuga, T., Sadoshima, J., Tomoike, H., Kanaide, H., Akaiké, N. & Nakamura, M. (1990). Action of Ca2+ antagonists on to types of Ca2+ channels in rat aorta smooth muscle cells in primary culture. Circ. Res. 67, 469–80.CrossRefGoogle Scholar
Llinas, R., Sugimori, M., Lin, J.W. & Cheskey, B. (1989). Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc. Nati. Acad. Sci. USA 86, 1689–93.CrossRefGoogle ScholarPubMed
Llinas, R., Sugimori, M. & Silver, R.B. (1992 a). Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677–9.CrossRefGoogle Scholar
Llinas, R., Sugimori, M., Hillman, D.E. & Cheskey, B. (1992b). Distribution and functional significance of the P-type, voltage-dependent Ca2+ channels in the mammalian central nervous system. Trends Neurosci. 15, 351–5.CrossRefGoogle ScholarPubMed
Matten, W., Daar, I. & Vand Woude, G.F. (1994). Protein kinase A acts at multiple points to inhibit Xenopus oocyte maturation. Moi. Cell. Biol. 14, 4419–26.Google ScholarPubMed
McClesky, E.W., Fox, A.P., Feldman, D., Cruz, L.J., Olivera, B.M., Tsien, R.W. & Yoshikami, D. (1987). ω-conotoxin: direct and persistent block of specific types of calcium channels in neurons but not in muscle. Proc. Nati. Acad. Sci. USA 84, 4327–31.CrossRefGoogle Scholar
McDonald, T.F., Pelzer, S. & Pelzer, D.J. (1994). Regulation and modulation of calcium channels in cardiac, skeletal and smooth muscle cells. Physiol. Rev. 74, 365507.CrossRefGoogle ScholarPubMed
Mery, P.F., Lohmann, S.M., Walter, U. & Fischmeister, R. (1991). Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc. Nati. Acad. Sci. USA 88, 1197–201.CrossRefGoogle ScholarPubMed
Mintz, I.M., Venema, V.J., Swiderek, K.M., Lee, T.D., Bean, B.P. & Adams, M.E. (1992). P-type calcium channels blocked by the spider venom toxin ω-Aga-IVA. Nature 355, 827–9.CrossRefGoogle ScholarPubMed
Mitra, M. & Morad, M. (1986). Two types of calcium channels in guinea-pig ventricular myocytes. Prod. Nati. Acad. Sci. USA 83, 5340–4.CrossRefGoogle ScholarPubMed
Moody, W.J. (1985). The development of calcium and potassium currents during oogénesis in the starfish Leptasterias hexactis. Dev. Biol. 112, 405–13.CrossRefGoogle ScholarPubMed
Moody, W.J. & Bosma, M.M. (1985). Hormone-induced loss of surface membrane during maturation of starfish oocytes: differential effects on potassium and calcium channels. Dev. Biol. 112, 396404.CrossRefGoogle ScholarPubMed
Moreau, M., Vilain, J.P. & Guerrier, P. (1980). Free calcium changes associated with hormone action in amphibian oocytes. Dev. Biol. 78, 201–14.CrossRefGoogle ScholarPubMed
Moreau, M., Guerrier, P. & Vilain, J.P. (1985). Ionic regulation of oocyte maturation. In Biology of Fertilization. I. Model Systems and Oogénesis, ed. Metz, C.B. & Monroy, A., pp. 299345. New York: Academic Press.CrossRefGoogle Scholar
Murphy, T.H., Worley, P.F. & Baraban, J.M. (1991). L-type voltage sensitive calcium channels mediate synaptic activation of mediate early genes. Neuron 7, 625–35.CrossRefGoogle ScholarPubMed
Nargeot, J., Dascal, N. & Lester, H.A. (1992). Heterologous expression of calcium channels, J. Membr. Biol. 126, 97108.CrossRefGoogle ScholarPubMed
Nastainczyk, W., Rohrkasten, A., Sieber, M., Rudolph, C., Schachtele, C., Marme, D. & Hofmann, F. (1987). Phosphorylation of the purified receptor for calcium channel blockers by cAMP kinase· and protein kinase C. Eur. J. Biochem. 169, 137–42.CrossRefGoogle ScholarPubMed
Nilius, B., Hess, P., Lansman, J.B. & Tsien, R.W. (1985). A novel type cardiac calcium channel in ventricular cells. Nature 316, 443–6.CrossRefGoogle ScholarPubMed
Nowycky, M.C., Fox, A.P. & Tsien, R.W. (1985). Three types of neuronal calcium channels with different agonist sensitivity. Nature 316, 440–3.CrossRefGoogle ScholarPubMed
Olivera, B.M., Miljanich, G.P., Ramachardran, J. & Adams, M.E. (1994). Calcium channel diversity and neurotransmitter release: the ω-conotoxins and ω-agatoxins. Annu. Rev. Biochem. 63, 823–67.CrossRefGoogle ScholarPubMed
Osterrieder, W., Brum, G., Hescheler, J., Trautwein, W., Flockerzi, V., Hofmann, F. (1982). Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current. Nature 298, 576–8.CrossRefGoogle ScholarPubMed
Ouadid, H. (1996). Expression of a rapidly inactivating Ca2+ channels in Pleurodeles oocytes during the resting season. FEBS Lett. 398, 285–90.CrossRefGoogle ScholarPubMed
Ouadid, H., Browaeys-Poly, E., Vilain, J.P. & Guilbaut, P. (1994). Endogenous DHP-sensitive Ca2+ channels in Pleurodeles oocytes. FEBS Lett. 351, 5862.CrossRefGoogle ScholarPubMed
Outsterhout, J.M. & Sperelakis, N. (1987). Cyclic nucleotides depress action potentials in cultured aortic smooth muscle cells. Eur. J. Pharmacol. 144, 714.CrossRefGoogle Scholar
Paupardin-Tritsch, D., Hammond, C., Gerschenfeld, H.M., Narin, A.C. & Greengard, P. (1986). cGMP-dependent protein kinase enhances Ca2+ current and potentiates the serotonin-induced Ca2+ current increase in snail neurons. Nature 323, 812–14.CrossRefGoogle Scholar
Perez-Reyes, E. & Schneider, T. (1994). Calcium channels: structure, function and classification. Drug Dev. Res. 33, 295318.CrossRefGoogle Scholar
Pelzer, D., Pelzer, S. & McDonald, T.F. (1990). Properties and regulation of calcium channels in muscle cells. Rev. Physiol. Biochem. Pharmacol. 114, 107207.CrossRefGoogle ScholarPubMed
Perez-Reyes, E. & Schneider, T. (1995). Molecular biology of calcium channels. Kidney Int. 48, 1111–24.CrossRefGoogle ScholarPubMed
Perez-Reyes, E., Yuan, W., Wei, X. & Bers, D.M. (1994). Regulation of the cloned L-type cardiac calcium channel by cyclic-AMP-dependent protein kinase. FEBS Lett. 342, 119–23.CrossRefGoogle ScholarPubMed
Plummer, M.R., Logothetis, D.E. & Hess, P. (1989). Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron 2, 1453–63.CrossRefGoogle ScholarPubMed
Rampe, D. & Kane, J.M. (1994). Activators of voltage-dependent L-type calcium channels. Drug. Dev. Res. 33, 344–63.CrossRefGoogle Scholar
Reuter, H. (1983). Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301, 569–74.CrossRefGoogle ScholarPubMed
Richard, S., Diochot, S., Nargeot, J., Baldy-Moulinier, M. & Valmier, J. (1991). Inhibition of T-type calcium currents by dihydropyridines in mouse embryonic dorsal root ganglion neurons. Neurosci. Lett. 132, 229–34.CrossRefGoogle ScholarPubMed
Richard, S., Neveu, D., Carnac, G., Bodin, P., Travo, P. & Nargeot, J. (1992). Differential expression of voltage-gated Ca2+ currents in cultivated aortic myocytes. Biochim. Biophys. Acta 1160, 95104.CrossRefGoogle ScholarPubMed
Romanin, C., Seydl, K., Glossmann, H. & Schindler, H. (1992). The dihydropyridine niguldipine inhibits T-type. Ca2+ currents in atrial myocytes. Pflügers Arch. 420, 410–12.CrossRefGoogle ScholarPubMed
Sather, W.A., Tanabe, T. & Zhang, J.F. (1993). Distinctive biophysical and pharmacological properties of class A (BI) calcium channel al subunits. Neuron 11, 291303.CrossRefGoogle Scholar
Smith, L.D.P. (1989). The induction of oocyte maturation: transmembrane signalling events and regulation of the cell cycle. Development 107, 685–99.CrossRefGoogle ScholarPubMed
Schlichter, L.C. (1983). Spontaneous action potentials produced by Na and Cl channels in maturing Rana pipiens oocytes. Dev. Biol. 98, 4759.CrossRefGoogle ScholarPubMed
Soong, T.W., Stea, A., Hodson, C.D., Dübel, S.J., Vincent, S.R. & Snutch, T.P. (1993). Structure and functional expression of a member of the low voltage-activated calcium family. Science 260, 1133–6.CrossRefGoogle ScholarPubMed
Sperelakis, N., Tohse, N., Ohya, Y. & Masuda, H. (1994). Cyclic GMP regulation of calcium slow channels in cardiac muscle and vascular smooth muscle cells. Adv. Pharmacol. 26, 217–52.CrossRefGoogle ScholarPubMed
Sperelakis, N., Katsube, Y., Yokoshiki, H., Sada, H. & Sumii, K. (1996). Regulation of the slow Ca2+ channels of myocardial cells. Mol. Cell. Biochem. 163/164, 8598.CrossRefGoogle Scholar
Sumii, K. & Sperelakis, N. (1995). cGMP-dependent protein kinase regulation of the L-type Ca2+ current in rat ventricular myocytes. Circ. Res. 77, 803–12.CrossRefGoogle ScholarPubMed
Trautwein, W., Cavalle, A., Flockerzi, V., Hofmann, F. & Pelzer, D. (1987). Modulation of calcium channel function by phosphorylation in guinea pig ventricular cells and phospholipid bilayer membranes. Circ. Res. 61, 1723.Google ScholarPubMed
Tsien, R.W., Bean, B.P., Hess, P., Lansman, J.B., Nilius, B. & Nowycky, M.C. (1986). Mechanism of calcium channel modulation of β-adrenergic agents and dihydropyridine calcium agonists, J. Mol. Cell. Cardiol. 18, 691710.CrossRefGoogle ScholarPubMed
Tsien, R.W., Ellinor, P.T. & Home, W.A. (1991). Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol. Sci. 12, 349–54.CrossRefGoogle ScholarPubMed
Van Coppenolle, F., Ahidouch, A., Guilbault, P. & Ouadid, H. (1997). Regulation of endogenous Ca2+ channels by cyclic AMP and cyclic GMP-dependent protein kinases in Pleurodeles oocytes. Mol. Cell. Biochem. 168, 155–61.CrossRefGoogle ScholarPubMed
Wahler, G.M. & Sperelakis, N. (1985). Intracellular injection of cyclic GMP depresses cardiac slow action potentials. J. Cyclic Nuci. Prot. Phos. Res. 10, 8395.Google ScholarPubMed
Zhang, J.F., Randall, A.D., Ellinor, P.T., Horne, W.A., Tanabe, T., Schwartz, T.L. & Tsien, R.W. (1993). Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacology 32, 1075–88.CrossRefGoogle ScholarPubMed
Zhou, Z. & Lipsius, S.L. (1994). T-type calcium current in latent pacemaker cells isolated from cat right atrium. J. Mol. Cell. Cardiol. 26, 1211–19.CrossRefGoogle ScholarPubMed