Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T23:20:35.747Z Has data issue: false hasContentIssue false

Sperm activation in species with external fertilisation

Published online by Cambridge University Press:  26 September 2008

Elisabetta Tosit
Affiliation:
Stazione Zoologica, Villa Comunale, I-80121 Naples, Italy

Extract

The spermatoozoon is an excitable cell that responds to specific effectors by rapidly changing its behaviour. In species with external fertilisation, spermatozoa are stored in a quiescent state in the testis, but within seconds after spawning, dilution into water triggers several activation events such as increases in motility and respiration. In some species, these are followed by the acrosome reaction, an exocytotic process that allows the spermatozoon to penetrate the egg investments and activate the egg (Dale, 1983). The majority of information on sperm activation has come from the sea urchin; secondarily teleosts and starfish have proved to be useful models.

Type
Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clapper, D.L., Davis, J.A., Lamothe, P.J., Patton, C.. & Epel, D.. (1985). Involvement of zinc in the regulation of pH1, motility, and acrosome reactions in sea urchin sperm. J. Cell Biol. 100, 1817–24.CrossRefGoogle Scholar
Dale, B.. (1983). Fertilization in Animals. London: Edward Arnold.Google Scholar
Dale, B.. & DeFelice, L.J.. (1984). Sperm-activated channels in ascidian oocytes. Dev. Biol. 101, 235–9.CrossRefGoogle ScholarPubMed
Dale, B.. & DeFelice, L.J.. (1990). Soluble sperm factor, electrical events and egg activiation. In Mechanism of Fertilization, ed. Dale, B., pp. 475–87. Nato ASI series Vol. 45. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Decker, G.L., Joseph, D.B.. & Lennarz, W.J.. (1976). A study of factors involved in induction of acrosome reaction in sperm of sea urchin, Arbacia punctulata. Dev. Biol. 53, 115–25.CrossRefGoogle ScholarPubMed
DeFelice, U., Dale, B.. & Talevi, R.. (1986). Distribution of fertilization channels in ascidian oocyte membranes. Proc. R. Soc. Lond. B 229, 209–14.Google ScholarPubMed
Domino, S.E.. & Garbers, D.L.. (1988). The fucose-sulfate glycoconjugate that induces an acrosome reaction in spermatozoa stimulates inositol 1,4,5-tris-phosphate accmulation. J. Biol. Chem. 263, 690–5CrossRefGoogle Scholar
Gray, J.. (1928). The effect of dilution on the activity of spermatozoa. J. Exp. Biol. 5, 337–44.CrossRefGoogle Scholar
Hansbrough, J.R..& Garbers, D.L.. (1981). Speract: purification and characterization of a peptide associated with eggs that activates spermatozoa. J. Biol. Chem. 256, 2235–41.CrossRefGoogle ScholarPubMed
Hoshi, M., Nishigaki, T., Ushiyama, A., Okinaga, T., Chiba, K..& Matsumoto, M.. (1994). Egg-jelly signal molecules for triggering the acrosome reaction in starfish spermatozoa. Int. I. Dev. Biol. (in press).Google ScholarPubMed
Ikaday, H..& Hoshi, M.. (1981). Biochemical studies on the acrosome reaction of the starfish, Asterias amurensis. II. Purification and characterization of the acrosome reaction-inducing substance. Dev. Growth Differ. 23, 81–.CrossRefGoogle Scholar
Iwasa, K.H., Ehrenstein, G., DeFelice, L.j.& Russel, J.T. (1990). High concentration of inositol 1,4,5,-triphosphate in sea urchin sperm. Biochem. Biophys. Res. Commun. 172, 932–8.CrossRefGoogle ScholarPubMed
Lee, H.C..& Garbers, D.L.. (1986). Modulation of the voltage sensitive Na+H+ exchange in sea urchin spermatozoa through membrane potential changes induced by the egg peptide speract. I. Biol. Chem. 261, 16026–32.CrossRefGoogle ScholarPubMed
Morisawa, M..& Suzuki, K.. (1980). Osmolality and potassium ion: their roles in initiation of sperm motility in teleost. Science 210, 1145–7.CrossRefGoogle Scholar
Ohtake, H.. (1976a). Respiratory behavior of sea-urchin spermatozoa. I. Effect of pH and egg water on the respiratory rate. J. Exp. Zool. 198, 303–12.CrossRefGoogle ScholarPubMed
Rothschild, L.. (1948). The physiology of sea urchin spermatozoa: lack of movement in semen. J. Exp. Biol. 25, 344–68.CrossRefGoogle ScholarPubMed
Shapiro, B.M., Schackmann, R.W., Tombes, R.M.. & Kazazoglou, T.. (1985). Coupled ionic and enzymatic regulation of sperm behavior. Curr. Top. Cell Regul. 26, 97113.CrossRefGoogle ScholarPubMed
Shirai, H., Ikegami, S., Kanatani, H.. & Mohori, H.. (1982). Regulation of sperm motility in starfish. I. Initiation of movement. Dev. Growth Differ. 24, 419–28.CrossRefGoogle ScholarPubMed
Suzuki, N., Shimomura, H., Radney, E.W., Ramarao, C.S., Ward, G.E., Bentley, J.K..& Garbers, D.L.. (1984). A peptide associated with eggs causes a mobility shift in a major plasma membrane protein of spermatozoa. J. Biol. Chem. 257, 14874–9.CrossRefGoogle Scholar
Tosti, E..& Dale, B.. (1992). Lithium and phorbol ester modify the activating capacity of ascidian spermatozoa. Experientia 48, 5760.CrossRefGoogle Scholar
Tosti, E., Palumbo, A..& Dale, B.. (1993). Inositol triphosphate in human and ascidian spermatozoa. MoL. Reprod. Dev. 35, 52–6.CrossRefGoogle ScholarPubMed
Yanagimachi, R., Cherr, G.N., Pillai, M.c..& Baldwin, I.D.. (1992). Factors controlling sperm entry into the micropyles of salmonid and herring eggs. Dev. Growth Differ. 34, 447–61.CrossRefGoogle ScholarPubMed