Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T08:59:17.522Z Has data issue: false hasContentIssue false

Somatic cells derived from haploid larvae are feasible as donors for nuclear transplant in zebrafish. Preliminary results

Published online by Cambridge University Press:  24 March 2011

J. Cardona-Costa*
Affiliation:
Laboratory of Animal Reproduction and Biotechnology (LARB-UPV), Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia, Spain.
M. Pérez-Camps
Affiliation:
Laboratory of Animal Reproduction and Biotechnology (LARB-UPV), Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia, Spain.
F. García-Ximénez
Affiliation:
Laboratory of Animal Reproduction and Biotechnology (LARB-UPV), Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia, Spain.
*
All correspondence to: J. Cardona-Costa. Laboratory of Animal Reproduction and Biotechnology (LARB-UPV), Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia, Spain. Tel: +34 96 3879433. Fax: +34 96 3877439. e-mail: cardona_costa_j@hotmail.com

Summary

Somatic cells derived from zebrafish haploid larval (both androgenetic and gynogenetic) cultures were used as donors for nuclear transplant into non-enucleated oocytes. Nuclei were transplanted either before or simultaneously with oocyte activation in the central region and in the incipient animal pole, respectively. Against expected results, 20% of transplanted embryos during oocyte activation using cells of gynogenetic origin reached the 100% epiboly stage, even two survived for up to 5 days, whereas no development was observed when cells from androgenetic origin were used. Results derived from this work open a novel possibility of studying somatic cell reprogramming and imprinting phenomena in zebrafish.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Botstein, D. & Fink, G.R. (1988). Yeast: an experimental organism for modern biology. Science 240, 1439–43.CrossRefGoogle ScholarPubMed
Bubenshchikova, E., Kaftanovskaya, E., Motosugi, N., Fujimoto, T., Arai, K., Kinoshita, M., Hashimoto, H., Ozato, K. & Wakamatsu, Y. (2007). Diploidized eggs reprogram adult somatic cell nuclei to pluripotency in nuclear transfer in medaka fish (Oryzias latipes). Dev. Growth Differ. 49, 699709.Google Scholar
Cardona-Costa, J., Pérez-Camps, M., García-Ximénez, F. & Espinós, F.J. (2009). Effect of gametes aging on their activation and fertilizability in zebrafish (Danio rerio). Zebrafish 6, 93–5.CrossRefGoogle ScholarPubMed
Carette, J.E., Guimaraes, C.P., Varadarajan, M., Park, A.S., Wuethrich, I., Godarova, A., Kotecki, M., Cochran, B.H., Spooner, E., Ploegh, H.L. & Brummelkamp, T.R. (2009). Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–5.CrossRefGoogle ScholarPubMed
Francisco-Simão, M., Cardona-Costa, J., Perez Camps, M. & García-Ximénez, F. (2010). Ultraviolet radiation dose to be applied in recipient zebrafish embryos for germ-line chimaerism is strain dependent. Reprod. Domest. Anim. 45, 10981103.CrossRefGoogle ScholarPubMed
Jiang, X., Yu, Y., Yang, H.W., Agar, N.Y., Frado, L. & Johnson, M.D. (2010). The imprinted gene PEG3 inhibits Wnt signaling and regulates glioma growth. J. Biol. Chem. 285, 8472–80.CrossRefGoogle ScholarPubMed
Kaftanovskaya, E., Motosugi, N., Kinoshita, M., Ozato, K. & Wakamatsu, Y. (2007). Ploidy mosaicism in well-developed nuclear transplants produced by transfer of adult somatic cell nuclei to nonenucleated eggs of medaka (Oryzias latipes). Dev. Growth Differ. 49, 691–8.CrossRefGoogle ScholarPubMed
Kane, D.A. & Kimmel, C.B. (1993). The zebrafish midblastula transition. Development 119, 447–56.Google Scholar
Korzh, V. (2009). Before maternal-zygotic transition. . .there was morphogenetic function of nuclei. Zebrafish 6, 295302.CrossRefGoogle ScholarPubMed
Latham, K.E. (2005). Early and delayed aspects of nuclear reprogramming during cloning. Biol. Cell 97, 119–32.Google Scholar
Ng, R.K. & Gurdon, J.B. (2005). Epigenetic memory of active gene transcription is inherited through somatic cell nuclear transfer. Proc. Natl. Acad. Sci. USA 102, 1957–62.CrossRefGoogle ScholarPubMed
Ng, R.K. & Gurdon, J.B. (2008) Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat. Cell Biol. 10, 102–9.CrossRefGoogle ScholarPubMed
Nüsslein-Volhard, C. & Dahm, R. (2002) Zebrafish: A Practical Approach pp. 164167. England: Oxford University Press.CrossRefGoogle Scholar
Pérez-Camps, M., Cardona-Costa, J., Francisco-Simao, M. & García-Ximénez, F. (2010a). Definition of three somatic adult cell nuclear transplant methods in zebrafish (Danio rerio): before, during and after egg activation by sperm fertilization. Zygote 18, 33–9.CrossRefGoogle ScholarPubMed
Pérez-Camps, M., Cardona-Costa, J. & García-Ximénez, F. (2010b) Transplantation of adult fibroblast nuclei into the central region of metaphase II eggs resulted in mid blastula transition embryos. Zebrafish 7, 215–8.CrossRefGoogle ScholarPubMed
Tsalavouta, M., Astudillo, O., Byrnes, L. & Nolan, C.M. (2009) Regulation of expression of zebrafish (Danio rerio) insulin-like growth factor 2 receptor: implications for evolution at the IGF2R locus. Evol. Dev. 11, 546558.CrossRefGoogle ScholarPubMed
Yi, M., Hong, N. & Hong, Y. (2009) Generation of medaka fish haploid embryonic stem cells. Science 326, 430–3.CrossRefGoogle ScholarPubMed
Westerfield, M. (2007) The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio). 5th edn. Eugene, OR, USA: Univ. of Oregon Press.Google Scholar