Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-04T19:21:59.724Z Has data issue: false hasContentIssue false

Oocyte activation procedures and influence of serum on porcine oocyte maturation and subsequent parthenogenetic and nuclear transfer embryo development

Published online by Cambridge University Press:  01 November 2008

E. García-Mengual
Affiliation:
Centro de Tecnología Animal. Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Segorbe, Castellón, Spain
J. Alfonso
Affiliation:
Instituto de Medicina Reproductiva (IMER), Valencia, Spain.
I. Salvador
Affiliation:
Centro de Tecnología Animal. Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Segorbe, Castellón, Spain
C-C. Duque
Affiliation:
Unidad de Reproducción Asistida Humana. H.U. La Fe de Valencia, Valencia, Spain.
M-A. Silvestre*
Affiliation:
Centro de Tecnología Animal. Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA). Apdo 187, Pol. La Esperanza n°100, 12400, Segorbe, Castellón, Spain Centro de Tecnología Animal. Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Segorbe, Castellón, Spain
*
All correspondence to: M-A Silvestre, Centro de Tecnología Animal. Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA). Apdo 187, Pol. La Esperanza n°100, 12400, Segorbe, Castellón, Spain; Tel: +34964712115, Fax: +34964710218, e-mail: masilver@ivia.es.

Summary

The viability of SCNT embryos is poor, with an extremely low cloned piglet production rate. In the present work, we studied the effect of three activation protocols based on ionomycin treatment (5 μM ionomycin for 5 min and incubated in 2 mM 6-DMAP for 3.5 h) or electric stimuli (two square wave electrical DC pulses of 1.2 kV/cm for 30 μs) combined or not with 6-DMAP on parthenogenetic embryo development. Oocytes activated by ionomycin plus 6-DMAP showed lower cleavage (47.2 vs. 78.5–81.5; p < 0.05) and blastocyst rates (11.3 vs. 29.2–32.1; p < 0.05) than those activated by electrical and electrical plus 6-DMAP treatments. Also, we studied the effect of addition of serum to maturation medium (0% vs. 10%) on nuclear maturation and further parthenogenetic and SCNT embryo development. We observed in the parthenogenetic embryos that cleavage rates in the serum-free group were significantly higher than in the serum-supplemented group (81.8 vs. 69.6% respectively; p < 0.05), although these differences were not detected in blastocyst rates or blastocyst nuclei numbers. Regarding SCNT embryos, no significant differences were observed in cleavage or blastocyst rates between different experimental groups of SCNT embryos. In conclusion, electrical pulse followed or not by 6-DMAP was found to be an efficient procedure to artificially activate MII porcine oocytes. Moreover, the addition of serum to oocyte maturation media did not seem to improve parthenogenetic or SCNT porcine embryo development.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeydeera, L.R. (2002). In vitro production of embryos in swine. Theriogenology 57, 256–73.Google Scholar
Abeydeera, L.R., Wang, W.H., Cantley, T.C., Rieke, A., Murphy, C.N., Prather, R.S. & Day, B.N. (2000). Development and viability of pig oocytes matured in a protein-free medium containing epidermal growth factor. Theriogenology 54, 787–97.CrossRefGoogle Scholar
Ali, A. & Sirard, M.A. (2002). Effect of the absence or presence of various protein supplements on further development of bovine oocytes during in vitro maturation. Biol. Reprod. 66, 901–5.CrossRefGoogle ScholarPubMed
Betthauser, J., Forsberg, E., Augenstein, M., Childs, L., Eilertsen, K., Enos, J., Forsythe, T., Golueke, P., Jurgella, G., Koppang, R., Lesmeister, T., Mallon, K., Mell, G., Misica, P., Pace, M., Pfister-Genskow, M., Strelchenko, N., Voelker, G., Watt, S., Thompson, S. & Bishop, M. (2000). Production of cloned pigs from in vitro systems. Nat. Biotechnol. 18, 1055–9.CrossRefGoogle ScholarPubMed
Bhak, J.S., Lee, S.L., Ock, S.A., Mohana, K.B., Choe, S.Y. & Rho, G.J. (2006). Developmental rate and ploidy of embryos produced by nuclear transfer with different activation treatments in cattle. Anim. Reprod. Sci. 92, 3749.CrossRefGoogle ScholarPubMed
Calder, M.D., Caveney, A.N., Sirard, M.A. & Watson, A.J. (2005). Effect of serum and cumulus cell expansion on marker gene transcripts in bovine cumulus–oocyte complexes during maturation in vitro. Fertil. Steril. 83 (Suppl 1), 1077–85.CrossRefGoogle ScholarPubMed
Dinnyes, A., Hirao, Y. & Nagai, T. (1999). Parthenogenetic activation of porcine oocytes by electric pulse and/or butyrolactone I treatment. Cloning 1, 209–16.CrossRefGoogle ScholarPubMed
Funahashi, H., Cantley, T.C., Stumpf, T.T., Terlouw, S.L. & Day, B.N. (1994). In vitro development of in vitro-matured porcine oocytes following chemical activation or in vitro fertilization. Biol. Reprod. 50, 1072–7.CrossRefGoogle ScholarPubMed
Grupen, C.G., Mau, J.C., McIlfatrick, S.M., Maddocks, S. & Nottle, M.B. (2002). Effect of 6-dimethylaminopurine on electrically activated in vitro matured porcine oocytes. Mol. Reprod. Dev. 62, 387–96.Google Scholar
Holker, M., Petersen, B., Hassel, P., Kues, W.A., Lemme, E., Lucas-Hahn, A. & Niemann, H. (2005). Duration of in vitro maturation of recipient oocytes affects blastocyst development of cloned porcine embryos. Cloning Stem Cells 7, 3544.CrossRefGoogle ScholarPubMed
Hyun, S.H., Lee, G.S., Kim, D.Y., Kim, H.S., Lee, S.H., Kim, S., Lee, E.S., Lim, J.M., Kang, S.K., Lee, B.C. & Hwang, W.S. (2003). Effect of maturation media and oocytes derived from sows or gilts on the development of cloned pig embryos. Theriogenology 59, 1641–9.Google Scholar
Illera, M.J., Lorenzo, P.L., Illera, J.C. & Petters, R.M. (1998). Developmental competence of immature pig oocytes under the influence of EGF, IGF-I, follicular fluid and gonadotropins during IVM–IVF processes. Int. J. Dev. Biol. 42, 1169–72.Google ScholarPubMed
Im, G.S., Seo, J.S., Hwang, I.S., Kim, D.H., Kim, S.W., Yang, B.C., Yang, B.S., Lai, L. & Prather, R.S. (2006). Development and apoptosis of pre-implantation porcine nuclear transfer embryos activated with different combination of chemicals. Mol. Reprod. Dev. 73, 1094–101.CrossRefGoogle ScholarPubMed
Kim, Y.S., Lee, S.L., Ock, S.A., Balasubramanian, S., Choe, S.Y. & Rho, G.J. (2005). Development of cloned pig embryos by nuclear transfer following different activation treatments. Mol. Reprod. Dev. 70, 308–13.Google Scholar
Kishida, R., Lee, E.S. & Fukui, Y. (2004). In vitro maturation of porcine oocytes using a defined medium and developmental capacity after intracytoplasmic sperm injection. Theriogenology 62, 1663–76.CrossRefGoogle ScholarPubMed
Koo, D.B., Chae, J.I., Kim, J.S., Wee, G., Song, B.S., Lee, K.K. & Han, Y.M. (2005). Inactivation of MPF and MAP kinase by single electrical stimulus for parthenogenetic development of porcine oocytes. Mol. Reprod. Dev. 72, 542–9.Google Scholar
Koo, D.B., Kang, Y.K., Choi, Y.H., Park, J.S., Han, S.K., Park, I.Y., Kim, S.U., Lee, K.K., Son, D.S., Chang, W.K. & Han, Y.M. (2000). In vitro development of reconstructed porcine oocytes after somatic cell nuclear transfer. Biol. Reprod. 63, 986–92.CrossRefGoogle ScholarPubMed
Krylov, V., Kren, R., Okada, K., Vackova, I., Tlapakova, T. & Fulka, J. (2005). Effect of protein supplement source on porcine oocyte maturation and subsequent embryonic development after parthenogenetic activation. Folia Biol. (Praha) 51, 2933.Google Scholar
Kwon, D.J., Park, C.K., Yang, B.K., Kim, C.I. & Cheong, H.T. (2007). Effects of maturational age of recipient oocytes and activation conditions on the development of porcine fetal fibroblast nuclear transfer embryos. Anim. Reprod. Sci. 100, 211–5.Google Scholar
Lai, L. & Prather, R.S. (2003). Production of cloned pigs by using somatic cells as donors. Cloning Stem Cells 5, 233–41.CrossRefGoogle ScholarPubMed
Lee, J.W., Tian, X.C. & Yang, X. (2004). Optimization of parthenogenetic activation protocol in porcine. Mol. Reprod. Dev. 68, 51–7.CrossRefGoogle ScholarPubMed
Liu, L. & Yang, X. (1999). Interplay of maturation-promoting factor and mitogen-activated protein kinase inactivation during metaphase-to-interphase transition of activated bovine oocytes. Biol. Reprod. 61, 17.CrossRefGoogle ScholarPubMed
Loi, P., Ledda, S., FulkaJ., Jr. J., Jr., Cappai, P. & Moor, R.M. (1998). Development of parthenogenetic and cloned ovine embryos: effect of activation protocols. Biol. Reprod. 58, 1177–87.Google Scholar
Mastromonaco, G.F., Semple, E., Robert, C., Rho, G.J., Betts, D.H. & King, W.A. (2004). Different culture media requirements of IVF and nuclear transfer bovine embryos. Reprod. Domest. Anim. 39, 462–7.CrossRefGoogle ScholarPubMed
Miyoshi, K., Sato, K. & Yoshida, M. (2006). In vitro development of cloned embryos derived from miniature pig somatic cells after activation by ultrasound stimulation. Cloning Stem Cells 8, 159–65.CrossRefGoogle ScholarPubMed
Roh, S. & Hwang, W.S. (2002). In vitro development of porcine parthenogenetic and cloned embryos: comparison of oocyte-activating techniques, various culture systems and nuclear transfer methods. Reprod. Fertil. Dev. 14, 93–9.Google Scholar
Russell, D.F., Baqir, S., Bordignon, J. & Betts, D.H. (2006). The impact of oocyte maturation media on early bovine embryonic development. Mol. Reprod. Dev. 73, 1255–70.Google Scholar
Sagirkaya, H., Misirlioglu, M., Kaya, A., First, N.L., Parrish, J.J. & Memili, E. (2007). Developmental potential of bovine oocytes cultured in different maturation and culture conditions. Anim. Reprod. Sci. 101, 225–40.CrossRefGoogle ScholarPubMed
Silvestre, M.A., Alfonso, J., Garcia-Mengual, E., Salvador, I., Duque, C.C. & Molina, I. (2007). Effect of recombinant human follicle-stimulating hormone and luteinizing hormone on in vitro maturation of porcine oocytes evaluated by the subsequent in vitro development of embryos obtained by in vitro fertilization, intracytoplasmic sperm injection, or parthenogenetic activation. J. Anim. Sci. 85, 1156–60.Google ScholarPubMed
Song, K. & Lee, E. (2007). Modification of maturation condition improves oocyte maturation and in vitro development of somatic cell nuclear transfer pig embryos. J. Vet. Sci. 8, 81–7.Google Scholar
Stringfellow, D.A. & Givens, M.D. (2000). Infectious agents in bovine embryo production: hazards and solutions. Theriogenology 53, 8594.CrossRefGoogle ScholarPubMed
Suzuki, M., Misumi, K., Ozawa, M., Noguchi, J., Kaneko, H., Ohnuma, K., Fuchimoto, D., Onishi, A., Iwamoto, M., Saito, N., Nagai, T. & Kikuchi, K. (2006). Successful piglet production by IVF of oocytes matured in vitro using NCSU-37 supplemented with fetal bovine serum. Theriogenology 65, 374–86.Google Scholar
Thouas, G.A., Korfiatis, N.A., French, A.J., Jones, G.M. & Trounson, A.O. (2001). Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod. Biomed. Online 3, 25–9.CrossRefGoogle ScholarPubMed
Watson, A.J., De Sousa, P., Caveney, A., Barcroft, L.C., Natale, D., Urquhart, J. & Westhusin, M.E. (2000). Impact of bovine oocyte maturation media on oocyte transcript levels, blastocyst development, cell number, and apoptosis. Biol. Reprod. 62, 355–64.Google Scholar
Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I.M. & Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–9.Google Scholar