Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-28T08:26:16.222Z Has data issue: false hasContentIssue false

Occurrence of chromosomal aneuploidy in rabbit oocytes and embryos at different developmental stages

Published online by Cambridge University Press:  26 November 2009

Jozef Curlej*
Affiliation:
Animal Production Research Centre Nitra, Hlohovecka 2, 951 41 Luzianky, Slovak Republic Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovak Republic.
Jozef Bulla
Affiliation:
Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovak Republic.
Peter Chrenek
Affiliation:
Department of Genetics and Animal Reproduction, Animal Production Research Centre, Nitra, Slovak Republic. Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovak Republic.
*
All correspondence to: Jozef Curlej. Animal Production Research Centre Nitra, Hlohovecka 2, 951 41 Luzianky, Slovak Republic; Tel: +421 37 654 6236. Fax: +421 37 654 6189. e-mail: jojonr@zoznam.sk

Summary

The aim of our study was to analyse chromosomal aneuploidy occurence in rabbit oocytes and embryos. Chromosomal analysis was done in rabbit oocytes and rabbit preimplantation embryos at 2-, 4- and 8-cell stages derived from in vivo fertilization. For mitotic cycle synchronization at the metaphase stage, 2-, 4- and 8-cell embryos were incubated in k-DMEM medium, supplemented with colcemid (1 μg/ml), for 7, 12 or 13h respectively. Success of metaphase synchronization was at values of 100, 86.1 and 92.2% for 2-, 4- and 8-cell embryos respectively. Recovery rate of analysable metaphase plates was reached at 58.8%, 83.9% and 59.8% for 2-, 4- and 8-cell embryos and 100% for oocytes. Significant difference (p < 0.01) in aneuploidy rate between oocytes (40.7%) and 2-cell embryos (62.5%) was found. These results demonstrate higher efficiency of synchronization of embryo cells at the metaphase stage, what may contribute to elevating the proportion of analysable nuclei.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Curlej, J., Parkanyi, V., Bulla, J., Jurcik, R. & Chrenek, P. (2007). The effect of hFVIII transgene on the chromosomal aneuploidy rate in rabbits. Folia Biologica (Krakow) 55, 161–4.CrossRefGoogle ScholarPubMed
Delhanty, J.D. & Handyside, A. (1995). The origin of genetic defects in the human and their detection in the preimplantation embryo. Hum. Reprod. Update 1, 201–15.CrossRefGoogle ScholarPubMed
Farfalli, V.I., Magli, M.V., Ferraretti, A.P. & Gianaroli, L. (2007). Role of aneuploidy on embryo implantation. Gynecol. Obstet. Invest. 64, 161–5.CrossRefGoogle ScholarPubMed
Fulka, J. Jr., First, N.L., Fulka, J. & Moor, R.M. (1999). Checkpoint control of the G2/M phase transition during the first mitotic cycle in mammalian eggs. Hum. Reprod. 14, 1582–7.CrossRefGoogle ScholarPubMed
Gianaroli, L., Magli, M.C., Ferraretti, A.P., Fiorentino, A., Garrisi, J. & Munné, S. (1997). Preimplantation genetic diagnosis increases the implantation rate in human in vitro fertilization by avoiding the transfer of chromosomally abnormal embryos. Fertil. Steril. 68, 1128–31.CrossRefGoogle Scholar
Hunt, P.A. & Hassold, T.J. (2002). Sex matters in meiosis. Science 296, 2181–3.CrossRefGoogle ScholarPubMed
Iwasaki, S. & Nakahara, T. (1990). Incidence of embryos with chromosomal anomalies in the inner cell mass among bovine blastocysts fertilized in vitro. Theriogenology 34, 683–90.CrossRefGoogle ScholarPubMed
Munné, S. (2003). Preimplantation genetic diagnosis and human implantation. A review. Placenta 24, 17.CrossRefGoogle ScholarPubMed
Munné, S., Alikani, M., Tomkin, G., Grifo, J & Cohen, J. (1995). Embryo morphology, developmental rates and maternal age are correlated with chromosome abnormalities. Fertil. Steril. 64, 382–91.CrossRefGoogle ScholarPubMed
Munné, S., Dailey, T., Finkelstein, M. & Weier, H.U. (1996). Reduction in signal overlap results in increased FISH efficiency: implications for preimplantation genetic diagnosis. J. Assist. Reprod. Genet. 13, 149–56.CrossRefGoogle ScholarPubMed
Munné, S., Sandalinas, M., Escudero, T., Fung, J., Gianaroli, L. & Cohen, J. (2000). Outcome of preimplantation genetic diagnosis of translocations. Fertil. Steril. 73, 1209–18.CrossRefGoogle ScholarPubMed
Parkany, V., Chrenek, P., Rafay, J., Suvegova, K., Jurcik, R., Makarevich, A.V., Pivko, J., Hetenyi, L. & Paleyanda, R.K. (2004). Aneuploidy in the transgenic rabbit. Folia Biologica (Praha) 50, 194–9.Google Scholar
Roychoudhury, S., Bulla, J., Curlej, J. & Chrenek, P. (2008). Hypodiploidy as a prominent attributor to chromosomal aneuploidy in transgenic rabbit embryos. Czech J. Anim. Sci. 53, 388–97.CrossRefGoogle Scholar
Shi, W., Dirim, F., Wolf, E., Zakhartchenko, V. & Haaf, T. (2004). Methylation reprogramming and chromosomal aneuploidy in in vivo fertilized and cloned rabbit preimplantation embryos. Biol. Reprod. 71, 340–7.CrossRefGoogle ScholarPubMed
Viuff, D., Greve, T., Avery, B., Hyttel, P., Brockhoff, Per.B. & Thomsen, P.B. (2000). Chromosome aberrations in vitro-produced bovine embryos at days 2–5 post-insemination. Biol. Reprod. 63, 1143–8.CrossRefGoogle ScholarPubMed
Wells, D. & Delhanty, J.D. (2000). Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol. Hum. Reprod. 6, 1055–62.CrossRefGoogle ScholarPubMed
Yoshizawa, M., Konno, H., Zhu, S., Kageyama, S., Kukui, E., Muramatsu, S., Kim, S. & Araki, Y. (1999). Chromosomal diagnosis in each individual blastomere of 5- to 10-cell bovine embryos derived from in vitro fertilization. Theriogenology 51, 1239–50.CrossRefGoogle ScholarPubMed
Yoshizawa, M., Miura, A., Narisawa, I., Sasaki, S. & Zhu, S. (2001). Chromosomal analysis in bovine embryos derived from in vitro fertilization of immature oocytes. J. Mamm. Ova Res. 18, 110–5.CrossRefGoogle Scholar