Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-13T02:13:16.470Z Has data issue: false hasContentIssue false

Expression of enzymes involved in the synthesis of prostaglandin E2 in bovine in vitro-produced embryos

Published online by Cambridge University Press:  14 January 2011

Marie Saint-Dizier*
Affiliation:
AgroParisTech, UFR Génétique Elevage Reproduction, 16 rue Claude Bernard, F-75231 Paris, France. AgroParisTech, UFR Génétique Elevage Reproduction, 16 rue Claude Bernard, F-75231 Paris, France. ENVA, UMR 1198 Biologie du développement et reproduction, F-94704 Maisons Alfort, France. INRA, UMR 1198 Biologie du développement et reproduction, F-78350 Jouy en Josas, France.
Bénédicte Grimard
Affiliation:
ENVA, UMR 1198 Biologie du développement et reproduction, F-94704 Maisons Alfort, France. INRA, UMR 1198 Biologie du développement et reproduction, F-78350 Jouy en Josas, France. Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, F-94704 Maisons Alfort, France.
Catherine Guyader-Joly
Affiliation:
UNCEIA, Département Recherche et Développement, 13 rue Jouët, F-94704 Maisons Alfort, France. Station R&D unceia/UCEAR, F-38300 Chateauvillain, France.
Patrice Humblot
Affiliation:
UNCEIA, Département Recherche et Développement, 13 rue Jouët, F-94704 Maisons Alfort, France.
Andrew A. Ponter
Affiliation:
ENVA, UMR 1198 Biologie du développement et reproduction, F-94704 Maisons Alfort, France. INRA, UMR 1198 Biologie du développement et reproduction, F-78350 Jouy en Josas, France. Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, F-94704 Maisons Alfort, France.
*
All correspondence to: Marie Saint-Dizier. AgroParisTech, UFR Génétique Elevage Reproduction, 16 rue Claude Bernard, F-75231 Paris, France. Tel: +33 1 44 08 18 52. Fax: +33 1 44 08 86 22. e-mail: stdizier@agroparistech.fr

Summary

Prostaglandin E2 (PGE2) may play a major role in embryo development and the establishment of pregnancy in cattle. The biosynthesis of PGE2 implies the sequential transformation of arachidonic acid to PGH2 by cyclooxygenases (COXs), then the conversion of PGH2 to PGE2 by prostaglandin E synthases (PGESs). Quantitative RT-PCR was used to examine the expression of COX-1, COX-2, microsomal PGES-1 (mPGES-1), microsomal PGES-2 (mPGES-2) and cytosolic PGES (cPGES) mRNAs in day 7 in vitro-produced (IVP) embryos from oocytes collected by ovum pick-up in Holstein heifers. Transcripts for COX-2 and mPGES-1 were detected in all embryos, whereas transcripts for COX-1 and mPGES-2 were not detected and cPGESs were at the limit of detection in 40% of embryos. Levels of COX-2 and mPGES-1 mRNAs were significantly higher in blastocysts and expanded blastocysts than in morulae and early blastocysts. Furthermore, excellent-quality embryos (grade 1) displayed higher levels of both COX-2 and mPGES-1 than did embryos of good and medium qualities (grades 2–3). Our results suggest that bovine IVP embryos at the morula and blastocyst stages use exclusively the COX-2/mPGES-1 pathway for PGE2 biosynthesis, and that PGE2 is potentially involved in blastocyst expansion and developmental competence.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arosh, J.A., Banu, S.K., Chapdelaine, P. & Fortier, M.A. (2004a). Temporal and tissue-specific expression of prostaglandin receptors EP2, EP3, EP4, FP, and cyclooxygenases 1 and 2 in uterus and fetal membranes during bovine pregnancy. Endocrinology 145, 407–17.CrossRefGoogle ScholarPubMed
Arosh, J.A., Banu, S.K., Kimmins, S., Chapdelaine, P., MacLaren, L.A. & Fortier, M.A. (2004b). Effect of interferon-tau on prostaglandin biosynthesis, transport, and signaling at the time of maternal recognition of pregnancy in cattle: evidence of polycrine actions of prostaglandin E2. Endocrinology 145, 5280–93.CrossRefGoogle ScholarPubMed
Aurich, C. & Budik, S. (2005). Expression of enzymes involved in the synthesis of prostaglandins in early equine embryos. In Proceedings of a Workshop on Maternal Recognition of Pregnancy in the Mare III, Barbados, West Indies, 13–16 November 2004, pp. 31–2.Google Scholar
Baskar, J.F., Torchiana, D.F., Biggers, J.D., Corey, E.J., Andersen, N.H. & Subramanian, N. (1981). Inhibition of hatching of mouse blastocysts in vitro by various prostaglandin antagonists. J. Reprod. Fertil. 63, 359–63.CrossRefGoogle ScholarPubMed
Bui, L.C., Evsikov, A.V., Khan, D.R., Archilla, C., Peynot, N., Henaut, A., Bourhis, D.L., Vignon, X., Renard, J.P. & Duranthon, V. (2009). Retrotransposon expression as a defining event of genome reprogramming in fertilized and cloned bovine embryos. Reproduction 138, 289–99.CrossRefGoogle ScholarPubMed
Charpigny, G., Reinaud, P., Tamby, J.P., Creminon, C. & Guillomot, M. (1997). Cyclooxygenase-2 unlike cyclooxygenase-1 is highly expressed in ovine embryos during the implantation period. Biol. Reprod. 57, 1032–40.CrossRefGoogle ScholarPubMed
El-Sayed, A., Hoelker, M., Rings, F., Salilew, D., Jennen, D., Tholen, E., Sirard, M.A., Schellander, K. & Tesfaye, D. (2006). Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiol. Genomics 28, 8496.CrossRefGoogle ScholarPubMed
Gabler, C., Odau, S., Muller, K., Schon, J., Bondzio, A. & Einspanier, R. (2008). Exploring cumulus–oocyte-complex–oviductal cell interactions: gene profiling in the bovine oviduct. J. Physiol. Pharmacol. 59, 2942.Google ScholarPubMed
Guyader-Joly, C., Ponchon, S., Thuard, J.M., Durand, M., Nibart, M., Marquant-Le Guienne, B. & Humblot, P. (1997). Effects of superovulation on repeated ultrasound guided oocyte collection and in vitro embryo production in pregnant heifers. Theriogenology 47, 157.CrossRefGoogle Scholar
Guyader-Joly, C., Ponchon, S., Durand, M., Heyman, Y., Renard, J.P. & Menezo, Y. (1999). Effect of lecithin on in vitro and in vivo survival of in vitro produced bovine blastocysts after cryopreservation. Theriogenology 52, 1193–202.CrossRefGoogle ScholarPubMed
Hansen, P.J. (2006). Realizing the promise of IVF in cattle – an overview. Theriogenology 65, 119125.CrossRefGoogle ScholarPubMed
Hwang, D.H., Pool, S.H., Rorie, R.W., Boudreau, M. & Godke, R.A. (1988). Transitional changes in arachidonic acid metabolism by bovine embryos at different developmental stages. Prostaglandins 35, 387402.CrossRefGoogle ScholarPubMed
Kudo, I. & Murakami, M. (2005). Prostaglandin E synthase, a terminal enzyme for prostaglandin E-2 biosynthesis. J. Biochem. Mol. Biol. 38, 633–8.Google Scholar
Marei, W.F., Wathes, D.C. & Fouladi-Nashta, A.A. (2009). The effect of linolenic acid on bovine oocyte maturation and development. Biol. Reprod. 81, 1064–72.CrossRefGoogle ScholarPubMed
Nuttinck, F., Guienne, B.M.L., Clement, L., Reinaud, P., Charpigny, G. & Grimard, B. (2008). Expression of genes involved in prostaglandin E-2 and progesterone production in bovine cumulus–oocyte complexes during in vitro maturation and fertilization. Reproduction 135, 593603.CrossRefGoogle ScholarPubMed
Pakrasi, P. L. & Jain, A. K. (2008). Cyclooxygenase-2 derived PGE2 and PGI2 play an important role via EP2 and PPAR delta receptors in early steps of oil induced decidualization in mice. Placenta 29, 523–30.CrossRefGoogle ScholarPubMed
Pfaffl, M.W., Wittmann, S.L., Meyer, H.H. & Bruckmaier, R.M. (2003). Gene expression of immunologically important factors in blood cells, milk cells, and mammary tissue of cows. J. Dairy Sci. 86, 538–45.CrossRefGoogle ScholarPubMed
Sales, K.J. & Jabbour, H.N. (2003). Cyclooxygenase enzymes and prostaglandins in reproductive tract physiology and pathology. Prostaglandins Other Lipid Mediat. 71, 97117.CrossRefGoogle ScholarPubMed
Sayre, B.L. & Lewis, G.S. (1993). Arachidonic-acid metabolism during early development of ovine embryos – a possible relationship to shedding of the zona-pellucida. Prostaglandins 45, 557–69.CrossRefGoogle ScholarPubMed
Stout, T.A.E. & Allen, W.R. (2001). Role of prostaglandins in intrauterine migration of the equine conceptus. Reproduction 121, 771–5.CrossRefGoogle ScholarPubMed
Stringfellow, D.A. & Seidel, S.M. (1998). Manual of IETS, 3rd edn.Savoy, IL, USA: International Embryo Transfer Society, pp. 106–7.Google Scholar
Tan, H.N., Liu, Y., Diao, H.L. & Yang, Z.M. (2005). Cyclooxygenases and prostaglandin E synthases in preimplantation mouse embryos. Zygote 13, 103–8.CrossRefGoogle ScholarPubMed
Taverne, M.A.M., Breukelman, S.P., Perenyi, Z., Dieleman, S.J., Vos, P., Jonker, H.H., de Ruigh, L. & Van Wagtendonk-De Leeuw, J.M. (2002). The monitoring of bovine pregnancies derived from transfer of in vitro produced embryos. Reprod. Nutr. Dev. 42, 613–24.CrossRefGoogle ScholarPubMed
Thibier, M. (2009). Data Retrieval Committee statistics of embryo transfer – year 2008. The worldwide statistics of embryo transfers in farm animals. Embryo Transfer Newsletter, International Embryo Transfer Society 27, 13–9.Google Scholar
Tsai, S.J., Wiltbank, M.C. & Bodensteiner, K.J. (1996). Distinct mechanisms regulate induction of messenger ribonucleic acid for prostaglandin (PG) G/H synthase-2, PGE (EP3) receptor, and PGF receptor in bovine preovulatory follicles. Endocrinology 137, 3348–55.CrossRefGoogle Scholar
Wang, H.B., Wen, Y., Mooney, S., Behr, B. & Polan, M.L. (2002). Phospholipase A2 and cyclooxygenase gene expression in human preimplantation embryos. J. Clin. Endocrinol. Metab. 87, 2629–34.CrossRefGoogle ScholarPubMed
Weber, J.A., Freeman, D.A., Vanderwall, D.K. & Woods, G.L. (1991). Prostaglandin-E2 hastens oviductal transport of equine embryos. Biol. Reprod. 45, 544–6.CrossRefGoogle ScholarPubMed
Wijayagunawardane, M.P.B., Miyamoto, A., Cerbito, W.A., Acosta, T.J., Takagi, M. & Sato, K. (1998). Local distributions of oviductal estradiol, progesterone, prostaglandins, oxytocin and endothelin-1 in the cyclic cow. Theriogenology 49, 607–18.CrossRefGoogle ScholarPubMed
Wijayagunawardane, M.P.B., Miyamoto, A., Taquahashi, Y., Gabler, C., Acosta, T.J., Nishimura, M., Killian, G. & Sato, K. (2001). In vitro regulation of local secretion and contraction of the bovine oviduct: stimulation by luteinizing hormone, endothelin-1 and prostaglandins, and inhibition by oxytocin. J. Endocrinol. 168, 117–30.CrossRefGoogle ScholarPubMed
Wilson, J.M., Zalesky, D.D., Looney, C.R., Bondioli, K.R. & Magness, R.R. (1992). Hormone-secretion by preimplantation embryos in a dynamic in vitro culture system. Biol. Reprod. 46, 295300.CrossRefGoogle Scholar
Wrenzycki, C., Herrmann, D. & Niemann, H. (2007). Messenger RNA in oocytes and embryos in relation to embryo viability. Theriogenology 68 (Suppl 1), S77S83.CrossRefGoogle ScholarPubMed