Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-9z9qw Total loading time: 1.189 Render date: 2021-08-06T01:14:00.891Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Synchronizing developmental stages in Neotropical catfishes for application in germ cell transplantation

Published online by Cambridge University Press:  28 March 2018

Dilberto Ribeiro Arashiro
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, Brazil. Institute of Bioscience, São Paulo State University, Rua Prof. Doutor Antonio Celso Wagner Zanin, s/no., Botucatu, SP 18618–689, Brazil.
George Shigueki Yasui
Affiliation:
Institute of Bioscience, São Paulo State University, Rua Prof. Doutor Antonio Celso Wagner Zanin, s/no., Botucatu, SP 18618–689, Brazil. Laboratory of Fish Biotechnology, National Center for Research Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, Brazil.
Leonardo Luiz Calado
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, Brazil.
Nivaldo Ferreira do Nascimento
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, Brazil. Aquaculture Center, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884–900, Brazil.
Matheus Pereira dos Santos
Affiliation:
Aquaculture Center, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884–900, Brazil.
Silvio Carlos Alves do Santos
Affiliation:
AES Tietê, Br-153, Rod, 0 Km 139 Centro, Promissão, SP 16370-000, Brazil.
Nycolas Levy-Pereira
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, Brazil. Department of Veterinary Medicine – FZEA, Avenida Duque de Caxias Norte 225, Pirassununga, SP 13639-080 Brazil.
Paulo Sérgio Monzani
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, Brazil. Department of Veterinary Medicine – FZEA, Avenida Duque de Caxias Norte 225, Pirassununga, SP 13639-080 Brazil.
Diógenes Henrique Siqueira-Silva
Affiliation:
UNIFESSPA – Federal University of South Southeast of Pará, Institute of Health Biological Studies (IESB), Folha 31, Quadra 7, Lote Especial, s/n – Nova Marabá, Marabá, PA 68507–590, Brazil.
José Augusto Senhorini
Affiliation:
Institute of Bioscience, São Paulo State University, Rua Prof. Doutor Antonio Celso Wagner Zanin, s/no., Botucatu, SP 18618–689, Brazil. Laboratory of Fish Biotechnology, National Center for Research Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, Brazil.
Corresponding

Summary

The aim of this study was to describe the effect of temperature on the fertilization, early developmental stages, and survival rate of two Neotropical catfishes Pimelodus maculatus and Pseudopimelodus mangurus. After fertilization, the eggs were incubated at 22°C, 26°C, and 30°C, which resulted in fertilization rates of 96.95 ± 1.79%, 98.74 ± 0.76%, and 98.44 ± 0.19% for P. maculatus and 96.10 ± 1.58%, 98.00 ± 0.63%, and 94.60 ± 2.09% for P. mangurus, respectively. For P. maculatus, hatching occurred after 22 h 30 min post-fertilization at 22°C, 16 h 30 min at 26°C, and 11 h 20 min at 30°C, and the hatching rates were 43.87 ± 7,46%, 57.57 ± 17.49%, and 53.63 ± 16.27%, respectively. For P. mangurus, hatching occurred after 28 h 30 min post-fertilization at 22°C and 17 h 30 min at 26°C with respective hatching rates of 45.4 ± 21.02% and 68.1 ± 12.67%. For this species, all embryos incubated at 30°C died before hatching. Additionally, for P. maculatus, the larvae from the lower (22°C) and higher temperatures (30°C) presented increased abnormality rates, as observed in the head, tail and yolk regions. The lowest abnormality rate was detected at 26°C, which was considered the optimal incubation temperature for both species. The developed protocol enables the manipulation of embryonic development, which is important for the application of reproductive biotechniques, including chimerism and chromosome-set manipulation. The data obtained here are also important for the surrogate propagation of this species as P. mangurus was recently categorized as an endangered fish species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade Talmelli, E., Kavamoto, E. & Narahara, M. (2002). Fenerich-Verani, Reprodução induzida da piabanha, Brycon insignis, mantida em cativeiro. Rev. Brás. Zootec. 31, 803–11.CrossRefGoogle Scholar
Arenzon, A., Lemos, C. & Bohrer, M. (2002). The influence of temperature on the embryonic development of the annual fish Cynopoecilus melanotaenia (Cyprinodontiformes, Rivulidae). Brazil. J. Biol. 62, 743–7.CrossRefGoogle Scholar
Brasil (2016). Sumário executivo do Livro vermelho da fauna brasileira ameaçada de extinção. Brasília, 75 pp.Google Scholar
Bressan, P.M., Kierulff, M.C.M. & Sugieda, A.M. (2009). Fauna ameaçada de extinção no Estado de São Paulo. São Paulo: Fundação Parque Zoológico de São Paulo, Secretaria do Meio Ambiente.Google Scholar
Comabella, Y., Hurtado, A., Canabal, J. & García-Galano, T. (2014). Effect of temperature on hatching and growth of Cuban gar (Atractosteus tristoechus) larvae. Ecosistemas y Recursos Agropecuarios 1, 1932.Google Scholar
da Silva, R.C., dos Santos, M.P., Senhorini, J.A., Paes, M.d.C.F., Valentin, F.N., Fujimoto, T., do Nascimento, N.F., Yasui, G.S. & Nakaghi, L.S.O. (2017). The effect of temperature on the initial development of Brycon amazonicus Spix & Agassiz, 1829 as tool for micromanipulation of embryos. Zygote 25, 637–51.CrossRefGoogle Scholar
Davidsen, M. (2012). The effect of incubation temperature on embryonic development and muscle growth in yolk-sac larvae of the European eel (Anguilla anguilla L., 1758). Master thesis: Institutt for biologi. https://brage.bibsys.no/xmlui/handle/11250/245075Google Scholar
do Nascimento, N.F., Pereira-Santos, M., Piva, L.H., Manzini, B., Fujimoto, T., Senhorini, J.A., Yasui, G.S. & Nakaghi, L.S.O. (2017). Growth, fatty acid composition, and reproductive parameters of diploid and triploid yellowtail tetra Astyanax altiparanae. Aquaculture 471, 163–71.CrossRefGoogle Scholar
Dos Santos, M.P, Yasui, G.S., Xavier, P.L., de Macedo Adamov, N.S., do Nascimento, N.F., Fujimoto, T., Senhorini, J.A. & Nakaghi, L.S. (2016). Morphology of gametes, post-fertilization events and the effect of temperature on the embryonic development of Astyanax altiparanae (Teleostei, Characidae). Zygote 24, 795807.CrossRefGoogle Scholar
Fenerich-Verani, N., Godinho, H.M. & Narahara, M.Y. (1984). The size composition of the eggs of curimbatá, Prochilodus scrofa Steindachner 1881, induced to spawn with human chorionic gonadotropin (HCG). Aquaculture 42, 3741.CrossRefGoogle Scholar
Ferraro, S.P. (1980). Embryonic development of Atlantic menhaden, Brevoortia tyrannus, and a fish embryo age estimation method. Fish. Bull. 77, 943–9.Google Scholar
Ficke, A.D., Myrick, C.A. & Hansen, L.J. (2007). Potential impacts of global climate change on freshwater fisheries. Rev. Fish Biol. Fish. 17, 581613.CrossRefGoogle Scholar
Froese, R. & Pauly, D. (2015). FishBase. World Wide Web Electronic Publication. www.fishbase.orgGoogle Scholar
Fujimoto, T., Kataoka, T., Sakao, S., Saito, T., Yamaha, E. & Arai, K. (2006). Developmental stages and germ cell lineage of the loach (Misgurnus anguillicaudatus). Zool. Sci. 23, 977–89.CrossRefGoogle Scholar
Galdino, A.M.R. (2013). Plasticidade do desenvolvimento muscular e da expressão temporal de fatores reguladores miogênicos durante os estádios iniciais de Rhamdia quelen incubados em diferentes temperaturas. https://educapes.capes.gov.br/handle/1884/30598Google Scholar
Galves, W., Shibatta, O.A. & Jerep, F.C. (2009). Estudos sobre diversidade de peixes da bacia do alto rio Paraná: uma revisão histórica. Semina: Ciências Biológicas e da Saúde 30, 141–54.Google Scholar
Godinho, H.P. & Godinho, A.L. (2003). Águas, peixes e pescadores do São Francisco das Minas Gerais, PUC Minas, Belo Horizonte.Google Scholar
Hu, F., Pan, L., Gao, F., Jian, Y., Wang, X., Li, L., Zhang, S. & Guo, W. (2015). Effect of temperature on incubation period and hatching success of fat greenling (Hexagrammos otakii Jordan & Starks) eggs. Aquacult. Res. 48, DOI: 10.1111/are.12853Google Scholar
Iwamatsu, T. (2004). Stages of normal development in the medaka Oryzias latipes. Mech. Dev. 121, 605–18.CrossRefGoogle ScholarPubMed
Jordaan, A. (2002). The effect of temperature on the development, growth and survival of Atlantic cod (Gadus morhua) during early life-histories. Master Thesis: The University of Maine. https://digitalcommons.library.umaine.edu/etd/141/Google Scholar
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. (1995). Stages of embryonic-development of the zebrafish. Dev. Dynam. 203, 253310.CrossRefGoogle ScholarPubMed
Korwin-Kossakowski, M. (2008). The influence of temperature during the embryonic period on larval growth and development in carp, Cyprinus carpio L., and grass carp, Ctenopharyngodon idella (Val.): theoretical and practical aspects. Arch. Polish Fish. 16, 231314.Google Scholar
Lahnsteiner, F., Kletzl, M. & Weismann, T. (2012). The effect of temperature on embryonic and yolk‐sac larval development in the burbot Lota. J. Fish Biol. 81, 977–86.CrossRefGoogle ScholarPubMed
Laurence, G.C. & Howell, W.H. (1981). Embryology and influence of temperature and salinity on early development and survival of yellowtail flounder Limanda ferruginea. Mar. Ecol. Prog. Ser. 6, 11–8.CrossRefGoogle Scholar
Lin, S., Long, W., Chen, J. & Hopkins, N. (1992). Production of germ-line chimeras in zebrafish by cell transplants from genetically pigmented to albino embryos. Proc. Natl. Acad. Sci. USA 89, 4519–23.CrossRefGoogle ScholarPubMed
Machado, A.B. M., Drummond, G.M. & Paglia, A.P. (2008). Livro vermelho da fauna brasileira ameaçada de extinção, MMA; Fundação Biodiversitas.Google Scholar
Nogueira, L.B., Azevedo, P.G., Canelhas, M.R., Bedore, A.G., Lopes, J.M. & Godinho, H.P. (2012). Induced spawning and early ontogeny in hatchery-reared catfish Zungaro jahu (Siluriformes: Pimelodidae). Neotrop. Ichthyol. 10, 8998.CrossRefGoogle Scholar
Okutsu, T., Shikina, S., Kanno, M., Takeuchi, Y. & Yoshizaki, G. (2007). Production of trout offspring from triploid salmon parents. Science 317, 1517.CrossRefGoogle ScholarPubMed
Pepin, P. (1991). Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Can. J. Fish. Aqua. Sci. 48, 503–18.CrossRefGoogle Scholar
Piferrer, F., Beaumont, A., Falguiere, J.-C., Flajshans, M., Haffray, P. & Colombo, L. (2009). Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 293, 125–56.CrossRefGoogle Scholar
Price, J.W. (1940). Time-temperature relations in the incubation of the whitefish, Coregonus clupeaformis (Mitchill). J. Gen. Physiol. 23, 449–68.CrossRefGoogle Scholar
Rodrigues-Galdino, A.M., Maiolino, C.V., Forgati, M., Donatti, L., Mikos, J.D., Carneiro, P.C.F. & Rios, F.S.A. (2010). Development of the neotropical catfish Rhamdia quelen (Siluriformes, Heptapteridae) incubated in different temperature regimes. Zygote 18, 131.CrossRefGoogle ScholarPubMed
Romagosa, E., Narahara, M. Y., Borella, M.I. & Fenerich-Verani, N. (2001). Seleção e caracterização de fêmeas de matrinxã, Brycon cephalus, induzidas a reprodução. Boletim do Instituto de Pesca 27, 139–47.Google Scholar
São Paulo (2014). Decreto No. 60.133, De 7 De Fevereiro De 2014.Google Scholar
Shinomiya, A., Shibata, N., Sakaizumi, M. & Hamaguchi, S. (2003). Sex reversal of genetic females (XX) induced by the transplantation of XY somatic cells in the medaka, Oryzias latipes. Int. J. Dev. Biol. 46, 711–7.Google Scholar
Takeuchi, Y., Yoshizaki, G. & Takeuchi, T. (2001). Production of germ‐line chimeras in rainbow trout by blastomere transplantation. Mol. Reprod. Dev. 59, 380–9.CrossRefGoogle ScholarPubMed
Takeuchi, Y., Yoshizaki, G. & Takeuchi, T. (2003). Generation of live fry from intraperitoneally transplanted primordial germ cells in rainbow trout. Biol. Reprod. 69, 1142–9.CrossRefGoogle ScholarPubMed
Velsen, F.J., Bernard, F., McKinnell, S. & Jamieson, G. (1980). Embryonic Development in Eggs of Sockeye Salmon, Oncorhynchus nerka. Canadian Department of Fisheries and Oceans.Google Scholar
Vieira Sampaio, E. & Yoshimi, S. (2006). Biologia reprodutiva e desova induzida de duas espécies de bagres (Osteichthyes: Siluriformes) da bacia do rio São Francisco. Acta Scientiarum. Biol. Sci. 28, DOI: 10.4025/actascibiolsci.v28i3.227Google Scholar
Winckler-Sosinski, L., Schwarzbold, A. & Schulz, U. (2005). Survival of rainbow trout Oncorhynchus mykiss Walbaum, 1792 (Salmoniformes–Salmonidae) eggs in an altitude stream in southern Brazil. Acta Limnol. Bras. 17, 465–72.Google Scholar
Yamaha, E., Mizuno, T., Hasebe, Y., Takeda, H. & Yamazaki, F. (1998). Dorsal specification in blastoderm at the blastula stage in the goldfish, Carassius auratus. Dev. Growth Diff. 40, 267–75.CrossRefGoogle ScholarPubMed
Yamaha, E., Saito, T., Goto-Kazeto, R. & Arai, K. (2007). Developmental biotechnology for aquaculture, with special reference to surrogate production in teleost fishes. J. Sea Res. 58, 822.CrossRefGoogle Scholar
Yasui, G., Fujimoto, T., Sakao, S., Yamaha, E. & Arai, K. (2011). Production of loach (Misgurnus anguillicaudatus) germ-line chimera using transplantation of primordial germ cells isolated from cryopreserved blastomeres. J. Anim. Sci. 89, 2380–8.CrossRefGoogle ScholarPubMed
3
Cited by

Linked content

Please note a has been issued for this article.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synchronizing developmental stages in Neotropical catfishes for application in germ cell transplantation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Synchronizing developmental stages in Neotropical catfishes for application in germ cell transplantation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Synchronizing developmental stages in Neotropical catfishes for application in germ cell transplantation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *