Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-09T01:14:27.988Z Has data issue: false hasContentIssue false

Stereological analysis of gonads from diploid and triploid fish yellowtail tetra Astyanax altiparanae (Garutti & Britski) in laboratory conditions

Published online by Cambridge University Press:  02 August 2017

Nivaldo Ferreira do Nascimento*
Affiliation:
Aquaculture Center, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884–900, Brazil. Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP 13630–970, Brazil.
Diógenes Henrique de Siqueira-Silva
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP 13630–970, Brazil. Universidade do Sul e Sudeste do Pará – UNIFESSPA, Folha 31, Quadra 07, Lote especial – Nova Marabá, Marabá, PA 68507–590, Brazil.
Matheus Pereira-Santos
Affiliation:
Aquaculture Center, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884–900, Brazil. Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP 13630–970, Brazil.
Takafumi Fujimoto
Affiliation:
Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, 041–8611, Hakodate, Japan.
José Augusto Senhorini
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP 13630–970, Brazil.
Laura Satiko Okada Nakaghi
Affiliation:
Aquaculture Center, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884–900, Brazil.
George Shigueki Yasui
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemésio Pereira de Godoy, Pirassununga, SP 13630–970, Brazil.
*
All correspondence to: Nivaldo Ferreira do Nascimento. Aquaculture Center, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884–900, Brazil. E-mail: nivaldotec@yahoo.com.br

Summary

This study aimed to examine the gonadal morphology of diploid and triploid fish through stereological analysis. Triploid individuals were obtained after temperature shock (40°C for 2 min) at 2 min post-fertilization and reared until 175 days post-fertilization (dpf). Intact eggs were used to obtain the diploids. Gonads were collected for histological analysis at 83, 114, 144 and 175 dpf. Diploid females and males presented normal oogenesis and spermatogenesis through all the experimental period. Conversely, stereological analysis revealed that triploid females were sterile and oogonia were the prevalent cell type in the ovaries. Triploid males presented increased amounts of spermatocyte cysts and a large area of lumen when compared with diploids and in addition the amount of spermatozoa was lower than that observed for diploids. However, some triploid males presented spermatogenesis similar to diploids. Therefore, we concluded that triploidization is an interesting alternative to produce sterile individuals in A. altiparanae.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamov, N., Nascimento, N.F., Maciel, E.C.S., Pereira-Santos, M., Senhorini, J.A., Nakaghi, L.S.O., Guerrero, A.H.M., Fujimoto, T. & Yasui, G.S. (2016). Triploid induction in the yellowtail tetra Astyanax altiparanae using temperature shock: tools for conservation and aquaculture. J. World Aquacult. Soc.. doi: 10.1111/jwas.12390.Google Scholar
Arai, K. (2001). Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture 197, 205–28.Google Scholar
Benfey, T.J. (2015). Effectiveness of triploidy as a management tool for reproductive containment of farmed fish: Atlantic salmon (Salmo salar) as a case study. Rev. Aquacult. doi: 10.1111/raq.12092 Google Scholar
Brown, M.B. & Forsythe, A.B. (1974). Robust tests for the equality of variances. J. Am. Stat. Ass. 69, 364–7.Google Scholar
Dala-Corte, R. & Azevedo, M.A. (2010). Biologia reprodutiva de Astyanax henseli (Teleostei, Characidae) do curso superior do rio dos Sinos, RS, Brasil. Iheríngia Ser. Zool. 100, 259–66.Google Scholar
De Carvalho, P., Paschoalini, A., Santos, G., Rizzo, E. & Bazzoli, N. (2009). Reproductive biology of Astyanax fasciatus (Pisces: Characiformes) in a reservoir in southeastern Brazil. J. Appl. Ichthyol. 25, 306–13.CrossRefGoogle Scholar
de Siqueira-Silva, D.H., dos Santos Silva, A.P., Ninhaus-Silveira, A. & Veríssimo-Silveira, R. (2015). The effects of temperature and busulfan (Myleran) on the yellowtail tetra Astyanax altiparanae (Pisces, Characiformes) spermatogenesis. Theriogenology 84, 1033–42.CrossRefGoogle ScholarPubMed
dos Santos, M.P., Yasui, G.S., Xavier, P.L. P., de Macedo Adamov, N.S., do Nascimento, N.F., Fujimoto, T., Senhorini, J.A. & Nakaghi, L.S.O. (2016). Morphology of gametes, post-fertilization events and the effect of temperature on the embryonic development of Astyanax altiparanae (Teleostei, Characidae). Zygote 24, 795807.Google Scholar
Dunham, R.A. (2004). Aquaculture and Fisheries Biotechnology: Genetic Approaches. GABI Publishing, Oxford.Google Scholar
Feindel, N.J., Benfey, T.J. & Trippel, E.A. (2010). Competitive spawning success and fertility of triploid male Atlantic cod (Gadus morhua). Aquacult. Environ. Interactions 1, 4755.Google Scholar
Feindel, N.J., Benfey, T.J. & Trippel, E.A. (2011). Gonadal development of triploid Atlantic Cod Gadus morhua . J. Fish Biol. 79, 1900–12.Google Scholar
Felip, A., Piferrer, F., Carrillo, M. & Zanuy, S. (2001). Comparison of the gonadal development and plasma levels of sex steroid hormones in diploid and triploid sea bass, Dicentrarchus labrax L. J. Exp. Zool. A Ecol. Genet. Physiol. 290, 384–95.Google Scholar
Fujimoto, T., Yasui, G.S., Yoshikawa, H., Yamaha, E. & Arai, K. (2008). Genetic and reproductive potential of spermatozoa of diploid and triploid males obtained from interspecific hybridization of Misgurnus anguillicaudatus female with M. mizolepis male. J. Appl. Ichthyol. 24, 430–7.CrossRefGoogle Scholar
Galvão, G.A., Silva, A.L.B., Cardoso, A.S., da Silva Santos, H., Pereira, P.A.N. & Ribeiro, L.B. (2016). Histomorfometria gonadal comparada de Astyanax lacustris (Lütken, 1875) e Psellogrammus kennedyi (Eigenmann, 1903) (Characiformes, Characidae) em um reservatório no semiárido brasileiro. Boletim do Instituto de Pesca 42, 734749.Google Scholar
Garutti, V. (2003). Piscicultura Ecológica, UNESP.Google Scholar
Golpour, A., Siddique, M.A. M., Siqueira-Silva, D.H. & Pšenicka, M. (2016). Induced sterility in fish and its potential and challenges for aquaculture and germ cell transplantation technology: a review. Biologia 71, 853–64.Google Scholar
Haffray, P., Bruant, J.-S., Facqueur, J.-M. & Fostier, A. (2005). Gonad development, growth, survival and quality traits in triploids of the protandrous hermaphrodyte gilthead seabream Sparus aurata (L.). Aquaculture 247, 107–17.Google Scholar
Hamasaki, M., Takeuchi, Y., Miyaki, K. & Yoshizaki, G. (2013). Gonadal development and fertility of triploid grass puffer Takifugu niphobles induced by cold shock treatment. Mar. Biotechnol. 15, 133–44.Google Scholar
Han, Y., Liu, M., Lan Zhang, L., Simpson, B. & Xue Zhang, G. (2010). Comparison of reproductive development in triploid and diploid female rainbow trout Oncorhynchus mykiss . J. Fish Biol. 76, 1742–50.CrossRefGoogle ScholarPubMed
Huergo, G.M. & Zaniboni-Filho, E. (2006). Triploidy induction in jundia, Rhamdia quelen (Quoy & Gaimard, 1824), through hydrostatic pressuere shock. J. Appl. Aquacult. 18, 4557.Google Scholar
Linhart, O., Rodina, M., Flajshans, M., Mavrodiev, N., Nebesarova, J., Gela, D. & Kocour, M. (2006). Studies on sperm of diploid and triploid tench, Tinca tinca (L.). Aquacult. Internat. 14, 925.CrossRefGoogle Scholar
Nascimento, N.F., Pereira-Santos, M., Piva, L.H., Manzini, B., Fujimoto, T., Senhorini, J. A., Yasui, G.S. & Nakaghi, L.S.O. (2017). Growth, fatty acid composition, and reproductive parameters of diploid and triploid yellowtail tetra Astyanax altiparanae . Aquaculture 471, 163–71.Google Scholar
Okutsu, T., Shikina, S., Kanno, M., Takeuchi, Y. & Yoshizaki, G. (2007). Production of trout offspring from triploid salmon parents. Science 317, 1517.CrossRefGoogle ScholarPubMed
Peruzzi, S., Rudolfsen, G., Primicerio, R., Frantzen, M. & Kauric, G. (2009). Milt characteristics of diploid and triploid Atlantic cod (Gadus morhua L.). Aquacult. Res. 40, 1160–9.Google Scholar
Piferrer, F., Beaumont, A., Falguiere, J.-C., Flajshans, M., Haffray, P. & Colombo, L. (2009). Polyploid fish and shellfish: Production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 293, 125–56.Google Scholar
Porto-Foresti, F., Castilho-Almeida, R.B., Senhorini, J.A. & Foresti, F. (2010). Biologia e criação do lambari do rabo amarelo (Astyanax altiparanae). In Espécies nativas pará piscicultura no Brasil, vol. 1 (eds Baldisserotto, B. & Gomes, L.C.), pp. 101–15. Editora UFSM, Santa Maria, Brazil.Google Scholar
Quagio-Grassiotto, I., Grier, H., Mazzoni, T.S., Nobrega, R.H. & Amorim, J.P.D. (2011). Activity of the ovarian germinal epithelium in the freshwater catfish, Pimelodus maculatus (Teleostei: Ostariophysi: Siluriformes): germline cysts, follicle formation and oocyte development. J. Morphol. 272, 1290– 306.Google Scholar
Schulz, R.W., de Franca, L.R., Lareyre, J.-J., LeGac, F., Chiarini-Garcia, H., Nobrega, R.H. & Miura, T. (2010). Spermatogenesis in fish. Gen. Comp. Endocr. 165, 390– 411.Google Scholar
Taranger, G.L., Carrillo, M., Schulz, R.W., Fontaine, P., Zanuy, S., Felip, A., Weltzien, F.-A., Dufour, S., Karlsen, O., Norberg, B., Andersson, E. & Hausen, T. (2010). Control of puberty in farmed fish. Gen. Comp. Endocrinol. 165, 483515.Google Scholar
Tiwary, B., Kirubagaran, R. & Ray, A. (2000). Gonadal development in triploid Heteropneustes fossilis . J. Fish Biol. 57, 1343–8.Google Scholar
Yamaha, E., Saito, T., Goto-Kazeto, R. & Arai, K. (2007). Developmental biotechnology for aquaculture, with special reference to surrogate production in teleost fishes. J. Sea Res. 58, 822.Google Scholar
Yasui, G.S., Santos, M. P., Nakaghi, L.S.O., Senhorini, J. A., Arias-Rodriguez, L., Fujimoto, T., Shimoda, E. & Silva, L.A. (2015). Improvement of gamete quality and its short-term storage: an approach for biotechnology in laboratory fish. Animal 9, 464–70.Google Scholar