Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-13T19:49:03.801Z Has data issue: false hasContentIssue false

In vitro development of nuclear transfer embryos derived from porcine embryonic germ cells and their descendent neural precursor cells

Published online by Cambridge University Press:  12 July 2011

Susa Shin
Department of Physiology, Dankook University School of Medicine, Cheonan, Korea.
Kwang Sung Ahn
Department of Physiology, Dankook University School of Medicine, Cheonan, Korea.
Seong-Jun Choi
StemK Inc., Ansan, Korea.
Soon Young Heo
Department of Nanobiomedical Science and WCU Research Center for Nanobiomedical Science, Dankook University, Cheonan, Korea.
Hosup Shim*
Department of Nanobiomedical Science and WCU Center for Nanobiomedical Science, Dankook University, San 29 Anseo-dong, Dongnam-gu, Cheonan, Chungnam 330–714, Korea. Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Korea.
All correspondence to: Hosup Shim. Department of Nanobiomedical Science and WCU Center for Nanobiomedical Science, Dankook University, San 29 Anseo-dong, Dongnam-gu, Cheonan, Chungnam 330–714, Korea. Tel: +82 41 550 3865. Fax: +82 41 550 1149. e-mail:


Undifferentiated stem cells may support a greater development of cloned embryos compared with differentiated cell types due to their ease of reprogramming during the nuclear transfer (NT) process. Hence, stem cells may be more suitable as nuclear donor cells for NT procedures than are somatic cells. Embryonic germ (EG) cells are undifferentiated stem cells that are isolated from cultured primordial germ cells (PGC) and can differentiate into several cell types. In this study, the in vitro development of NT embryos using porcine EG cells and their derivative neural precursor (NP) cells was investigated, thus eliminating any variation in genetic differences. The rates of fusion did not differ between NT embryos from EG and NP cells; however, the rate of cleavage in NT embryos derived from EG cells was significantly higher (p < 0.05) than that from NP cells (141/247 [57.1%] vs. 105/228 [46.1%]). Similarly, the rate of blastocyst development was significantly higher (P < 0.05) in NT using EG cells than the rate using NP cells (43/247 [17.4%] vs. 18/228 [7.9%]). The results obtained from the present study in pigs demonstrate a reduced capability for nuclear donor cells to be reprogrammed following the differentiation of porcine EG cells. Undifferentiated EG cells may be more amenable to reprogramming after reconstruction compared with differentiated somatic cells.

Research Article
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Ahn, K.S., Won, J.Y., Heo, S.Y., Kang, J.H., Yang, H.S. & Shim, H. (2007). Transgenesis and nuclear transfer using porcine embryonic germ cells. Cloning Stem Cells 9, 461–8.CrossRefGoogle ScholarPubMed
Baguisi, A., Behboodi, E., Melican, D.T., Pollock, J.S., Destrempes, M.M., Cammuso, C., Williams, J.L., Nims, S.D., Porter, C.A., Midura, P., Palacios, M.J., Ayres, S.L., Denniston, R.S., Hayes, M.L., Ziomek, C.A., Meade, H.M., Godke, R.A., Gavin, W.G., Overstrom, E.W. & Echelard, Y. (1999). Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17, 456–61.CrossRefGoogle ScholarPubMed
Bosch, P., Pratt, S.L. & Stice, S.L. (2006). Isolation, characterization, gene modification, and nuclear reprogramming of porcine mesenchymal stem cells. Biol. Reprod. 74, 4657.CrossRefGoogle ScholarPubMed
Brevini, T.A., Antonini, S., Cillo, F., Crestan, M. & Gandolfi, F. (2007). Porcine embryonic stem cells: Facts, challenges and hopes. Theriogenology 68 Suppl. 1, S20613.CrossRefGoogle Scholar
Cibelli, J.B., Stice, S.L., Golueke, P.J., Kane, J.J., Jerry, J., Blackwell, C., Ponce de Leon, F.A. & Robl, J.M. (1998). Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280, 1256–8.CrossRefGoogle ScholarPubMed
Colleoni, S., Donofrio, G., Lagutina, I., Duchi, R., Galli, C. & Lazzari, G. (2005). Establishment, differentiation, electroporation, viral transduction, and nuclear transfer of bovine and porcine mesenchymal stem cells. Cloning Stem Cells 7, 154–66.CrossRefGoogle ScholarPubMed
Faast, R., Harrison, S.J., Beebe, L.F., McIlfatrick, S.M., Ashman, R.J. & Nottle, M.B. (2006). Use of adult mesenchymal stem cells isolated from bone marrow and blood for somatic cell nuclear transfer in pigs. Cloning Stem Cells 8, 166–73.CrossRefGoogle ScholarPubMed
Galli, C., Duchi, R., Moor, R.M. & Lazzari, G. (1999). Mammalian leukocytes contain all the genetic information necessary for the development of a new individual. Cloning 1, 161–70.CrossRefGoogle ScholarPubMed
Gottlieb, D.I. (2002). Large-scale sources of neural stem cells. Annu. Rev. Neurosci. 25, 381407.CrossRefGoogle ScholarPubMed
Guan, K., Chang, H., Rolletschek, A. & Wobus, A.M. (2001). Embryonic stem cell-derived neurogenesis. Retinoic acid induction and lineage selection of neuronal cells. Cell Tissue Res. 305, 171–6.CrossRefGoogle ScholarPubMed
Gurdon, J.B. (1962). The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 10, 622–40.Google ScholarPubMed
Han, Y.M., Kang, Y.K., Koo, D.B. & Lee, K.K. (2003). Nuclear reprogramming of cloned embryos produced in vitro. Theriogenology 59, 3344.CrossRefGoogle ScholarPubMed
Hochedlinger, K. & Jaenisch, R. (2002). Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–8.CrossRefGoogle ScholarPubMed
Jaenisch, R., Hochedlinger, K., Blelloch, R., Yamada, Y., Baldwin, K. & Eggan, K. (2004). Nuclear cloning, epigenetic reprogramming, and cellular differentiation. Cold Spring Harb. Symp. Quant. Biol. 69, 1927.CrossRefGoogle ScholarPubMed
Jin, H.F., Kumar, B.M., Kim, J.G., Song, H.J., Jeong, Y.J., Cho, S.K., Balasubramanian, S., Choe, S.Y. & Rho, G.J. (2007). Enhanced development of porcine embryos cloned from bone marrow mesenchymal stem cells. Int. J. Dev. Biol. 51, 8590.CrossRefGoogle ScholarPubMed
Kato, Y., Tani, T. & Tsunoda, Y. (2000). Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. J. Reprod. Fertil. 120, 231–7.CrossRefGoogle ScholarPubMed
Kues, W.A. & Niemann, H. (2004). The contribution of farm animals to human health. Trends Biotechnol. 22, 286–94.CrossRefGoogle ScholarPubMed
Lendahl, U., Zimmerman, L.B. & McKay, R.D. (1990). CNS stem cells express a new class of intermediate filament protein. Cell. 60, 585–95.CrossRefGoogle ScholarPubMed
Matsui, Y., Zsebo, K. & Hogan, B.L. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–7.CrossRefGoogle ScholarPubMed
Miyashita, N., Shiga, K., Yonai, M., Kaneyama, K., Kobayashi, S., Kojima, T., Goto, Y., Kishi, M., Aso, H., Suzuki, T., Sakaguchi, M. & Nagai, T. (2002). Remarkable differences in telomere lengths among cloned cattle derived from different cell types. Biol. Reprod. 66, 1649–55.CrossRefGoogle ScholarPubMed
Ogura, A., Inoue, K., Ogonuki, N., Noguchi, A., Takano, K., Nagano, R., Suzuki, O., Lee, J., Ishino, F. & Matsuda, J. (2000). Production of male cloned mice from fresh, cultured, and cryopreserved immature Sertoli cells. Biol. Reprod. 62, 1579–84.CrossRefGoogle ScholarPubMed
Onishi, A., Takeda, K., Komatsu, M., Akita, T. & Kojima, T. (1994). Production of chimeric pigs and the analysis of chimerism using mitochondrial deoxyribonucleic acid as a cell marker. Biol. Reprod. 51, 1069–75.CrossRefGoogle ScholarPubMed
Polejaeva, I.A., Chen, S.H., Vaught, T.D., Page, R.L., Mullins, J., Ball, S., Dai, Y., Boone, J., Walker, S., Ayares, D.L., Colman, A. & Campbell, K.H.S. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 8690.CrossRefGoogle ScholarPubMed
Resnick, J.L., Bixter, L.S., Cheng, L. & Donovan, P.J. (1992). Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550–1.CrossRefGoogle ScholarPubMed
Rideout, W.M. 3rd, Wakayama, T., Wutz, A., Eggan, K., Jackson-Grusby, L., Dausman, J., Yanagimachi, R. & Jaenisch, R. (2000). Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nat. Genet. 24, 109–10.CrossRefGoogle ScholarPubMed
Schwartz, P.H., Nethercott, H., Kirov, I.I., Ziaeian, B., Young, M.J. & Klassen, H. (2005). Expression of neurodevelopmental markers by cultured porcine neural precursor cells. Stem Cells 23, 1286–94.CrossRefGoogle ScholarPubMed
Shim, H., Gutierrez-Adan, A., Chen, L.R., BonDurant, R.H., Behboodi, E. & Anderson, G.B. (1997). Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol. Reprod. 57, 1089–95.CrossRefGoogle ScholarPubMed
Wakayama, T., Rodriguez, I., Perry, A.C., Yanagimachi, R. & Mombaerts, P. (1999). Mice cloned from embryonic stem cells. Proc. Natl. Acad. Sci. USA 96, 14984–9.CrossRefGoogle ScholarPubMed
Westphal, H. (2005). Restoring stemness. Differentiation 73, 447–51.CrossRefGoogle ScholarPubMed
Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J. & Campbell, K.H.S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–3.CrossRefGoogle ScholarPubMed
Yang, X., Smith, S.L., Tian, X.C., Lewin, H.A., Renard, J.P. & Wakayama, T. (2007) Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet. 39, 295302.CrossRefGoogle ScholarPubMed
Ying, Q.L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. (2003). Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–6.CrossRefGoogle ScholarPubMed
Zhang, S.C., Wernig, M., Duncan, I.D., Brustle, O. & Thomson, J.A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 1129–33.CrossRefGoogle ScholarPubMed
Zhu, H., Craig, J.A., Dyce, P.W., Sunnen, N. & Li, J. (2004). Embryos derived from porcine skin-derived stem cells exhibit enhanced preimplantation development. Biol. Reprod. 71, 1890–7.CrossRefGoogle ScholarPubMed