Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-pgkvd Total loading time: 0.859 Render date: 2022-08-13T21:30:39.597Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

Germ plasm provides clues on meiosis: the concerted action of germ plasm granules and mitochondria in gametogenesis of the clam Ruditapes philippinarum

Published online by Cambridge University Press:  07 December 2018

Arkadiy Reunov*
Affiliation:
University of Ottawa Heart Institute, Electron Microscopy Laboratory, 40 Ruskin Street, Ottawa, ON K1Y 4W7, Canada National Scientific Centre of Marine Biology, Laboratory of Cell Differentiation, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690041, Russia
Yana Alexandrova
Affiliation:
National Scientific Centre of Marine Biology, Laboratory of Cell Differentiation, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690041, Russia
Yulia Reunova
Affiliation:
National Scientific Centre of Marine Biology, Laboratory of Cell Differentiation, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690041, Russia
Alina Komkova
Affiliation:
National Scientific Centre of Marine Biology, Laboratory of Cell Differentiation, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690041, Russia
Liliana Milani
Affiliation:
University of Bologna, Department of Biological, Geological and Environmental Sciences, Via Selmi 3, 40126 Bologna, Italy
*
Address for correspondence: Arkadiy Reunov. Electron Microscopy Laboratory, University of Ottawa Heart Institute, 40 Ruskin St, Ottawa ON K1Y 4W7, Canada. Tel: +1 613 761 5282. Fax: +1 613 761 4998. E-mail: areunov@ottawaheart.ca

Summary

Germ plasm-related structures (GPRS) are known to accompany meiotic cell differentiation but their dynamics are still poorly understood. In this study, we analyzed the ultrastructural mechanisms of GPRS transformation during oogenesis and spermatogenesis of the bivalve mollusc Ruditapes philippinarum (Manila clam), exploring patterns of GPRS activity occurring at meiosis onset, sex-specific difference/similarity of such patterns, and the involvement of mitochondria during GPRS-assigned events. In the two sexes, the zygotene–pachytene stage of meiosis is anticipated by three shared steps. First, the dispersion of germ plasm granules containing the germ line determinant VASA occurs. Second, the VASA protein deriving from germ plasm granules enters neighbouring mitochondria and appears to induce mitochondrial matter release, as supported by cytochrome B localization outside the mitochondria. Third, intranuclear VASA entrance occurs and the protein appears involved in chromatin reorganization, as supported by VASA localization in synaptonemal complexes. In spermatogenesis, these three steps are sufficient for the normal course of meiosis. In oogenesis, these are followed by the action of ‘germ plasm granule formation complex’, a novel type of structure that appears alternative to the Balbiani body. The possibility of germ plasm involvement in reproductive technologies is also suggested.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ables, ET (2015) Drosophila oocytes as a model for understanding meiosis: an educational primer to accompany ‘Corolla is a novel protein that contributes to the architecture of the synaptonemal complex of Drosophila. Genetics 199, 1723.CrossRefGoogle Scholar
Amikura, R, Kashikawa, M, Nakamura, A and Kobayashi, S (2001) Presence of mitochondria-type ribosomes outside mitochondria in germ plasm of Drosophila embryos. Proc Natl Acad Sci USA 98, 91339138.CrossRefGoogle ScholarPubMed
Amikura, R, Sato, K and Kobayashi, S (2005) Role of mitochondrial ribosome dependent translation in germline formation in Drosophila embryos. Mech Dev 122, 10871093.CrossRefGoogle ScholarPubMed
Bilinski, SM, Kloc, M and Tworzydlo, W (2017) Selection of mitochondria in female germline cells: is Balbiani body implicated in this process? J Assist Reprod Genet 34, 14051412.CrossRefGoogle ScholarPubMed
Carré, D, Djediat, C and Sardet, C (2002) Formation of a large Vasa-positive germ granule and its inheritance by germ cells in the enigmatic Chaetognaths. Development 129, 661670.Google ScholarPubMed
Castrillon, DH, Quade, BJ, Wang, TY, Quigley, C, Crum, CP (2000) The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci USA 97, 95859590.CrossRefGoogle ScholarPubMed
Chang, P, Torres, J, Lewis, RA, Mowry, KL, Houliston, E and King, ML (2004) Localization of RNAs to the mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulum. Mol Biol Cell 15, 46694681.CrossRefGoogle ScholarPubMed
Cox, RT and Spradling, AC (2003) A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development 130, 15791590.CrossRefGoogle ScholarPubMed
Cuykendall, TN and Houston, DW (2010) Identification of germ plasm-associated transcripts by microarray analysis of Xenopus vegetal cortex RNA. Dev Dyn 239, 18381848.CrossRefGoogle ScholarPubMed
Delgado, M and Perez-Camacho, A (2007) Comparative study of gonadal development of Ruditapes philippinarum (Adams and Reeve) and Ruditapes decussates (L.) (Mollusca; Bivalvia): influence of temperature. Scientia Marina 71, 471484.CrossRefGoogle Scholar
Eckelbarger, KJ (2005) Oogenesis and oocytes. Hydrobiologia 535/536, 179198.CrossRefGoogle Scholar
Findley, SD, Tamanaha, M, Clegg, NJ and Ruohola-Baker, H (2003) Maelstrom, a Drosophila spindle-class gene, encodes a protein that colocalizes with Vasa and RDE1/AGO1 homolog, Aubergine, in nuage. Development 130, 859871.CrossRefGoogle ScholarPubMed
Gur, Y and Breitbart, H (2006) Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes. Genes Dev 20, 411416.Google Scholar
Gur, Y and Breitbart, H (2008) Protein synthesis in sperm: dialog between mitochondria and cytoplasm. Mol Cell Endocrinol 282, 4555.CrossRefGoogle ScholarPubMed
Gustafson, EA and Wessel, GM (2010) Vasa genes: emerging roles in the germ line and in multipotent cells. Bioessays 32, 626637.CrossRefGoogle ScholarPubMed
Hendriks, S, Dancet, EAF, van Pelt, AMM, Hamer, G and Repping, S (2015) Artificial gametes: a systematic review of biological progress towards clinical application. Hum Reprod Update 21, 285296.CrossRefGoogle ScholarPubMed
Kalt, MR (1973) Ultrastructural observations on the germ line of Xenopus laevis . Z. Zellforsch 138, 4162.CrossRefGoogle ScholarPubMed
Kashikawa, M, Amikura, R and Kobayashi, S (2001) Mitochondrial small ribosomal RNA is a component of germinal granules in Xenopus embryos. Mech Dev 101, 7177.CrossRefGoogle ScholarPubMed
Kashir, J, Jones, C, Child, T, Williams, SA and Coward, K (2012) Viability assessment for artificial gametes: the need for biomarkers of functional competency. Biol Reprod 87, 111.CrossRefGoogle ScholarPubMed
Kloc, M, Bilinski, S, Chan, AP and Etkin, LD (2001) Mitochondrial ribosomal RNA in the germinal granules in Xenopus embryos revisited. Differentiation 67, 8083.CrossRefGoogle ScholarPubMed
Kloc, M, Dougherty, MT, Bilinski, S, Chan, AP, Brey, E, King, ML, Patrick, CW Jr and Etkin, LD (2002) Three-dimensional ultrastructural analysis of RNA distribution within germinal granules of Xenopus . Dev Biol 241, 7993.CrossRefGoogle ScholarPubMed
Kobayashi, S, Amikura, R and Okada, M (1993) Presence of mitochondrial large ribosomal RNA outside mitochondria in germ plasm of Drosophila melanogaster . Science 260, 15211524.CrossRefGoogle ScholarPubMed
Kobayashi, S, Amikura, R and Okada, M (1994) Localization of mitochondrial large rRNA in germinal granules and the consequent segregation of germ line. Int J Dev Biol 38, 193199.Google ScholarPubMed
Kobayashi, S, Amikura, R and Mukai, M (1998) Localization of mitochondrial large ribosomal RNA in germ plasm of Xenopus embryos. Curr Biol 8, 11171120.CrossRefGoogle ScholarPubMed
Lasko, PF and Ashburner, M (1988) The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature 335, 611617.CrossRefGoogle ScholarPubMed
Liang, L, Diehl-Jones, W and Lasko, P (1994) Localization of vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development 120, 12011211.Google ScholarPubMed
Lippai, M, Gobet, I, Tomkowiak, M, Durocher, Y, Leclerc, C, Moreau, M and Guerrier, P (1995) Thimerosal triggers meiosis reinitiation in oocytes of the Japanese clam Ruditapes philippinarum by eliciting an intracellular Ca2+ surge. Int J Dev Biol 39, 401407.Google ScholarPubMed
Mahowald, AP (1962) Fine structure of pole cells and polar granules in Drosophila melanogaster. J Exp Zool 151, 201205.CrossRefGoogle Scholar
Matova, N and Cooley, L (2001) Comparative aspects of animal oogenesis. Dev Biol 231, 291320.CrossRefGoogle ScholarPubMed
Medrano, JV, Reijo Pera, RA and Simon, C (2013) Germ cell differentiation from pluripotent cells. Semin Reprod Med 31, 1423.Google ScholarPubMed
Milani, L, Ghiselli, F, Maurizii, MG and Passamonti, M (2011) Doubly uniparental inheritance of mitochondria as a model system for studying germ line formation. PLoS One 6, e28194.CrossRefGoogle ScholarPubMed
Milani, L, Ghiselli, F, Pecci, A, Maurizii, MG and Passamonti, M (2015) The expression of a novel mitochondrially-encoded gene in gonadic precursors may drive paternal inheritance of mitochondria. PLoS One 10, e0137468 CrossRefGoogle ScholarPubMed
Milani, L, Pecci, A, Ghiselli, F, Passamonti, M, Bettini, S, Franceschini, V, Maurizii, MG (2017) VASA expression suggests shared germ line dynamics in bivalve molluscs. Histochem Cell Biol 148, 157171.CrossRefGoogle ScholarPubMed
Moreno, I, Miguez-Forjan, JM and Simon, C (2015) Artificial gametes from stem cells. Clin Exp Reprod Med 42, 3344.CrossRefGoogle ScholarPubMed
Nikolic, A, Volarevic, V, Armstrong, L, Lako, M and Stojkovic, M (2016) Primordial germ cells: current knowledge and perspectives. Stem Cell Int Article ID 1741072, http://dx.doi.org/10.1155/2016/1741072.Google Scholar
Ninomiya, Y and Ichinose, S (2007) Subcellular distribution of mitochondrial ribosomal RNA in the mouse oocyte and zygote. PLoS One 2, e1241.CrossRefGoogle ScholarPubMed
Pek, JW and Kai, T (2011) A role for Vasa in regulating mitotic chromosome condensation in Drosophila . Curr Biol 21, 3944.CrossRefGoogle ScholarPubMed
Raz, E (2000) The function and regulation of vasa-like genes in germ-cell development. Genome Biol 1, 16.CrossRefGoogle ScholarPubMed
Reunov, AA (2004) Is there a germ plasm in mouse oocytes? Zygote 12, 329332.CrossRefGoogle Scholar
Reunov, AA and Reunova, YA (2015) In mouse oocytes the mitochondrion-originated germinal body-like structures accumulate mouse Vasa homologue (MVH) protein. Zygote 23, 501506.CrossRefGoogle ScholarPubMed
Reunov, AA, Isaeva, VV, Au, DWT and Wu, RSS (2000) Nuage constituents arising from mitochondria: is it possible? Dev Growth Differ 42, 139143.CrossRefGoogle ScholarPubMed
Reunov, AA, Yurchenko, OV, Alexandrova, YN and Radashevsky, VI (2009) Spermatogenesis in Boccardiella hamata (Polychaeta: Spionidae) from the sea of Japan: sperm formation mechanisms as characteristics for future taxonomic revision. Acta Zoologica 91, 447456.CrossRefGoogle Scholar
Saffman, EE and Lasko, P (1999) Germline development in vertebrates and invertebrates. Cell Mol Life Sci 55, 11411163.CrossRefGoogle ScholarPubMed
Strome, S and Wood, WB (1983) Generation of asymmetry and segregation of germ line granules in early C elegans embryos. Cell 35, 1125.CrossRefGoogle ScholarPubMed
Villegas, J, Araya, P, Bustos-Obregon, E and Burzio, LO (2002) Localization of the 16S mitochondrial rRNA in the nucleus of mammalian spermatogenic cells. Mol Hum Reprod 8, 977983.CrossRefGoogle ScholarPubMed
Watanabe, M, Itoh, K, Abe, K, Akizawa, T, Ikenishi, K and Furusawa, M (1992) Immuno-localization of DEAD family proteins in germ line cells of Xenopus embryos. Dev Growth Differ 34, 223231.CrossRefGoogle Scholar
Wilk, K, Bilinski, S, Dougherty, MT and Kloc, M (2004) Delivery of germinal granules and localized RNAs via the messenger transport organizer pathway to the vegetal cortex of Xenopus oocytes occurs through directional expansion of the mitochondrial cloud. Int J Dev Biol 49, 1721.CrossRefGoogle Scholar
Williamson, A and Lehmann, R (1996) Germ cell development in Drosophila . Annu Rev Cell Dev Biol 12, 365391.CrossRefGoogle ScholarPubMed
Wolf, PM, Priess, J and Hirsh, D (1983) Segregation of germline granules in early embryos of Caenorhabditis elegans. An electron microscopic analysis. J Embryol Exp Morphol 73, 297306.Google ScholarPubMed
Yajima, M and Wessel, GM (2011) The multiple hats of Vasa function and its regulation of cell cycle progression. Mol Reprod Dev 78, 861867.CrossRefGoogle Scholar
Yakovlev, KV (2016) Localization of germ plasm-related structures during sea urchin oogenesis. Dev Dynam 245, 5666.CrossRefGoogle ScholarPubMed
10
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Germ plasm provides clues on meiosis: the concerted action of germ plasm granules and mitochondria in gametogenesis of the clam Ruditapes philippinarum
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Germ plasm provides clues on meiosis: the concerted action of germ plasm granules and mitochondria in gametogenesis of the clam Ruditapes philippinarum
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Germ plasm provides clues on meiosis: the concerted action of germ plasm granules and mitochondria in gametogenesis of the clam Ruditapes philippinarum
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *