Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-xl4lj Total loading time: 0.285 Render date: 2021-06-14T04:58:57.217Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

Effects of fulvic acids on goat sperm

Published online by Cambridge University Press:  28 June 2018

Yu Xiao
Affiliation:
Reproductive Medical Center, the International Peace Maternity and Child Health Hospital of China Welfare Institute, 910 Hengshan Road, Shanghai, 200030, China
Zhengmu Wu
Affiliation:
Reproductive Medical Center, the International Peace Maternity and Child Health Hospital of China Welfare Institute, 910 Hengshan Road, Shanghai, 200030, China
Min Wang
Affiliation:
Reproductive Medical Center, the International Peace Maternity and Child Health Hospital of China Welfare Institute, 910 Hengshan Road, Shanghai, 200030, China
Corresponding
E-mail address:

Summary

The effects of adding fulvic acids (FAs) to semen extenders on the quality parameters of frozen–thawed goat buck spermatozoa remain undetermined. Buck semen samples collected from six mature goat bucks once a week were diluted with Tris–egg yolk-based extenders. The diluted semen samples were supplemented with FAs (0.2, 0.4 and 0.6%, w/w), cryopreserved, and evaluated for sperm-quality parameters. Addition of FAs to the extender increased progressive motility, acrosome integrity, membrane integrity, and superoxide dismutase and catalase activities and decreased percentage abnormality and sperm malondialdehyde level compared with the control group. However, excessive FA addition (>0.4%, w/w) to semen extenders did not improve the efficiency. The results indicated that FAs could be a promising cryoprotectant for goat buck sperm.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

Ahmad, Z., Anzar, M., Shahab, N., Ahmad, S. & Andrabi, M.H. (2003). Sephadex and Sephadex ion exchange filtration improves the quality and freezability of low-grade buffalo semen ejaculates. Theriogenology 59, 1189–202.CrossRefGoogle ScholarPubMed
Aiken, G.R., McKnight, D.M., Wershaw, R.L. & MacCarthy, P. (1985). Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization, 1st edn. New York: Wiley.Google Scholar
Bai, H.X., Chang, Q.F., Shi, B.M. & Shan, A.S. (2013). Effects of fulvic acid on growth performance and meat quality in growing-finishing pigs. Livest. Sci. 158, 118–23.CrossRefGoogle Scholar
Bearden, H.J. & Fuquay, J.W. (1997). Semen evaluation. In Applied Animal Reproduction, 4th edn (eds Bearden, H.J. & Fuquay, J.W.), pp. 158–69. New Jersey: Prentice Hall, Upper Saddle River.Google Scholar
Che, R.Q., Huang, L., Xu, J.W., Zhao, P., Li, T., Ma, H.X. & Yu, X.Y. (2017). Effect of fulvic acid induction on the physiology, metabolism, and lipid biosynthesis-related gene transcription of Monoraphidium sp. FXY-10. Bioresource Technol. 227, 324–34CrossRefGoogle ScholarPubMed
Chang, Q.F., Bai, H.X., Shi, B.M., Shan, A.S., Wei, C.Y., Yu, C.Q. & Tong, B.S. (2013). Effects of dietary FA on the growth performance, serum biochemical indices, routine blood parameter and immunity of growing swine. Chin. J. Anim. Nutr. 25, 1836–42.Google Scholar
Çimrin, K.M., Türkmen, Ö., Turan, M. & Tuncer, B. (2010). Phosphorus and humic acid application alleviate salinity stress of pepper seedling. Afr. J. Biotechnol. 9, 5845–51.Google Scholar
Flohe, L. & Otting, F. (1984). Superoxide dismutase assays. Methods Enzymol. 105, 93104.CrossRefGoogle ScholarPubMed
Gao, Y., He, J., He, Z.L., Li, Z.W., Zhao, B., Mu, Y., Lee, J.Y. & Chu, Z.J. (2017). Effects of fulvic acid on growth performance and intestinal health of juvenile loach Paramisgurnus dabryanus (Sauvage). Fish. Shellfish Immun. 62, 4756.CrossRefGoogle Scholar
Gutiérrez-Dagnino, A., Fierro-Coronado, J.A., Álvarez-Ruí, P., del Carmen Flores-Miranda, M., Miranda-Saucedo, S., Medina-Beltrán, V. & Escamilla-Montes, R. (2015). Effect of inulin and fulvic acid on survival, growth, immune system, and WSSV prevalence in Litopenaeus vannamei. Lat. Am. J. Aquat. Res. 43, 912–21.Google Scholar
Giaretta, E., Estrada, E., Bucci, D., Spinaci, M., Rodríguez-Gil, J.E. & Yeste, M. (2015). Combining reduced glutathione and ascorbic acid has supplementary beneficial effects on boar sperm cryotolerance. Theriogenology 83, 399407.CrossRefGoogle ScholarPubMed
Goth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta. 196, 143–51.CrossRefGoogle ScholarPubMed
Hu, J.H., Li, Q.W., Li, G., Jiang, Z.L., Bu, S.H., Yang, H. & Wang, L.Q. (2009). The cryoprotective effect of trehalose supplementation on boar spermatozoa quality. Anim. Reprod. Sci. 112, 107–18. (Retracted)CrossRefGoogle ScholarPubMed
Hu, J.H., Sun, X.Z., Li, Q.W., Zhang, T., Hu, X.C., Hu, J.H. & Wan, L.Q. (2013). The effect of Laminaria japonic polysaccharide on sperm characteristics and biochemical parameters in cryopreserved boar sperm. Anim. Reprod. Sci. 139, 95100.CrossRefGoogle ScholarPubMed
Huck, J.A., Porter, N. & Bushed, M.E. (1991). Effect of humates on microbial activity. J. Gen. Microbiol. 137, 2321–9.CrossRefGoogle Scholar
Islam, K.M.S., Schumacher, A. & Groop, J.M. (2005). Humic acid substances in animal agriculture. Pakistan J. Nutr. 4, 126–34.Google Scholar
Janos, P. (2003). Separation methods in the chemistry of humic substances. J. Chromatogr. A. 983, 118.CrossRefGoogle ScholarPubMed
Jayasooriya, R.G.P.T., Dilshara, M.G., Kang, C.H., Lee, S., Choi, Y.H., Jeong, Y.K. & Kim, G.Y. (2016). Fulvic acid promotes extracellular anti-cancer mediators from RAW 264.7 cells, causing to cancer cell death in vitro. Int. Immunopharmacol. 36, 241–8.CrossRefGoogle ScholarPubMed
Liu, C.H., Dong, H.B., Ma, D.L., Li, Y.W., Han, D., Luo, M.J., Chang, Z.L. & Tan, J.H. (2016). Effects of pH during liquid storage of goat semen on sperm viability and fertilizing potential. Anim. Reprod. Sci. 164, 4756.CrossRefGoogle ScholarPubMed
Nur, Z., Zik, B., Ustuner, B., Sagirkaya, H. & Ozguden, C.G. (2010). Effects of different cryoprotective agents on ram sperm morphology and DNA integrity. Theriogenology 73, 1267–75.CrossRefGoogle Scholar
Plaza, C., García-Gil, J.C., Polo, A., Senesi, N. & Brunetti, G. (2005). Proton binding by humic and fulvic acids from pig slurry and amended soils. J. Environ. Qual. 34, 1131–7.CrossRefGoogle ScholarPubMed
Qian, L., Yu, S.J. & Zhou, Y. (2016). Protective effect of hyaluronic acid on cryopreserved boar sperm. Int. J. Biol. Macromol. 87, 287–9.CrossRefGoogle ScholarPubMed
Vidal, A.H., Batista, A.M., da Silva, E.C.B., Gomes, W.A., Pelinca, M.A., Silva, S.V. & Guerra, M.M.P. (2013). Soybean lecithin-based extender as an alternative for goat sperm cryopreservation. Small Rumin. Res. 109, 4751.CrossRefGoogle Scholar
Yeste, M., Estrada, E., Pinart, E., Bonet, S., Miró, J. & Rodríguez-Gil, J.E. (2014). The improving effect of reduced glutathione on boar sperm cryotolerance is related with the intrinsic ejaculate freezability. Cryobiology 68, 251–61.CrossRefGoogle ScholarPubMed
Yang, H.L., Chiu, H.C. & Lu, F. (1996). Effects of humic acid on the viability and coagulant properties of human umbilical vein endothelial cells. Am. J. Hematol. 51, 200–6.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effects of fulvic acids on goat sperm
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effects of fulvic acids on goat sperm
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effects of fulvic acids on goat sperm
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *