Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-65n5b Total loading time: 0.213 Render date: 2021-06-17T17:07:36.116Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Potential use of spectroscopic techniques for assessing table eggs and hatching eggs

Published online by Cambridge University Press:  20 August 2019

Q. ZHAO
Affiliation:
State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
L. BAN
Affiliation:
Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
J. ZHENG
Affiliation:
State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
G. XU
Affiliation:
State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
Z. NING
Affiliation:
State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
L. QU
Affiliation:
State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
Corresponding
E-mail address:
Get access

Abstract

In evaluating the quality of table eggs and the developmental stages of embryonic eggs, spectroscopic techniques provide greater efficiency than traditional, time-consuming and laborious approaches. This review summarises recent developments in the spectroscopic analysis of table eggs, including the determination of the chemical composition (ratios of performance to standard deviation of 4.38, 2.25, 2.28, 2.31, and 3.03 for fat, moisture, and protein in egg yolk and moisture and protein in egg albumen, respectively, have been reported). A Haugh unit detection accuracy RMSEP (root mean square error of prediction) for quality of 6.29 was obtained by hyperspectral imaging) for table eggs and fertility detection (for white-shell eggs, fertility detection has been realised at a promising rate of 93.5%) and gender determination in hatching eggs. In conclusion, hyperspectral imaging generally outperforms visible or near-infrared reflectance spectroscopy when evaluating both consumption eggs and hatching eggs, and near-infrared reflectance Raman and fluorescence spectroscopy exhibit a strong potential for gender determination prior to hatching. Scientists have attained a correct sexing rate above 90% at 3.5 d of egg incubation without removing the inner shell membrane. In the detection of blood-spot eggs or fertile eggs, eggshell colour proved to be a negative factor.

Type
Review
Copyright
Copyright © World's Poultry Science Association 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

ABDEL-NOUR, N. and NGADI, M. (2011) Detection of omega-3 fatty acid in designer eggs using hyperspectral imaging. International Journal of Food Sciences and Nutrition 62: 418-422.CrossRefGoogle ScholarPubMed
ABDEL-NOUR, N., NGADI, M., PRASHER, S. and KARIMI, Y. (2011) Prediction of egg freshness and albumen quality using visible/near infrared spectroscopy. Food and Bioprocess Technology 4: 731-736.CrossRefGoogle Scholar
ABOONAJMI, M. and NAJAFABADI, T.A. (2014) Prediction of poultry egg freshness using Vis-NIR spectroscopy with maximum likelihood method. International Journal of Food Properties 17: 2166-2176.CrossRefGoogle Scholar
ABOONAJMI, M., SABERI, A., ABBASIAN NAJAFABADI, T. and KONDO, N. (2016) Quality assessment of poultry egg based on visible-near infrared spectroscopy and radial basis function networks. International Journal of Food Properties 19: 1163-1172.CrossRefGoogle Scholar
BAMELIS, F.R., TONA, K., DE BAERDEMAEKER, J.G. and DECUYPERE, E.M. (2002) Detection of early embryonic development in chicken eggs using visible light transmission. British Poultry Science 43: 204-212.CrossRefGoogle ScholarPubMed
BERARDINELLI, A., GIUNCHI, A., GUARNIERI, A., PEZZI, F. and RAGNI, L. (2005) Shell egg albumen height assessment by FT--NIR spectroscopy. Transactions of the ASAE 48: 1423-1428.CrossRefGoogle Scholar
BIEDERMAN, I. and SHIFFRAR, M.M. (1987) Sexing day-old chicks: A case study and expert systems analysis of a difficult perceptual-learning task. Journal of Experimental Psychology: Learning, memory, and cognition 13: 640.Google Scholar
BURLEY, R.W. and VADEHRA, D.V. (1989) The avian egg, chemistry and biology. Wiley Publisher Inc. New York.Google Scholar
CHEN, M., ZHANG, L.R. and XU, H.R. (2015) On-line detection of blood spot introduced into brown-shell eggs using visible absorbance spectroscopy. Biosystems Engineering 131: 95-101.CrossRefGoogle Scholar
CLOSE, B., BANISTER, K., BAUMANS, V., BERNOTH, E.M., BROMAGE, N., BUNYAN, J., ERHARDT, W., FLECKNELL, P., GREGORY, N., HACKBARTH, H., MORTON, D. and WARWICK, C. (1997) Recommendations for euthanasia of experimental animals: Part 2. Laboratory Animals 31: 1-32.CrossRefGoogle ScholarPubMed
CORONEL-REYES, J., RAMIREZ-MORALES, I., FERNANDEZ-BLANCO, E., RIVERO, D. and PAZOS, A. (2018) Determination of egg storage time at room temperature using a low-cost NIR spectrometer and machine learning techniques. Computers and Electronics in Agriculture 145: 1-10.CrossRefGoogle Scholar
DALLE ZOTTE, A., BERZAGHI, P., JANSSON, L. and ANDRIGHETTO, I. (2006) The use of near-infrared reflectance spectroscopy (NIRS) in the prediction of chemical composition of freeze-dried egg yolk and discrimination between different n-3 PUFA feeding sources. Animal Feed Science and Technology 128: 108-121.CrossRefGoogle Scholar
DAS, K. and EVANS, M.D. (1992) Detecting fertility of hatching eggs using machine vision I. Histogram characterization method. Transactions of the ASAE 35: 1335-1341.CrossRefGoogle Scholar
DE KETELAERE, B., BAMELIS, F., KEMPS, B., DECUYPERE, E. and DE BAERDEMAEKER, J. (2004) Non-destructive measurements of the egg quality. World's Poultry Science Journal 60: 289-302.CrossRefGoogle Scholar
DE KETELAERE, B., MERTENS, K., KEMPS, B., BAMELIS, F., DECUYPERE, E. and DE BAERDEMAKER, J. (2005) Improved blood detection in consumption eggs using combined reflection-transmission spectroscopy. Proceedings of the 11th European Symposium on the Quality of Eggs and Egg Products, Netherlands, pp. 23-26.Google Scholar
DONG, X.G., DONG, J., PENG, Y.K. and TANG, X.Y. (2017a) Comparative study of albumen pH and whole egg pH for the evaluation of egg freshness. Spectroscopy Letters 50: 463-469.CrossRefGoogle Scholar
DONG, X.G., TANG, X.Y., PENG, Y.K. and DONG, J. (2017b) Nondestructive assessment of eggshell thickness by VIS/NIR spectroscopy. In 2017 ASABE Annual International Meeting, Washington, p.1.CrossRefGoogle Scholar
GALIS, A.M., DALE, L.M., BOUDRY, C. and THEWIS, A. (2012) The potential use of near-infrared spectroscopy for the quality assessment of eggs and egg products. Scientific Works. C Series. Veterinary Medicine 58: 294-307.Google Scholar
GALLI, R., PREUSSE, G., SCHNABEL, C., BARTELS, T., CRAMER, K., KRAUTWALD-JUNGHANNS, M., KOCH, E. and STEINER, G. (2018) Sexing of chicken eggs by fluorescence and Raman spectroscopy through the shell membrane. PLoS One 13: e192554.CrossRefGoogle ScholarPubMed
GALLI, R., PREUSSE, G., UCKERMANN, O., BARTELS, T., KRAUTWALD-JUNGHANNS, M., KOCH, E. and STEINER, G. (2016) In ovo sexing of domestic chicken eggs by raman spectroscopy. Analytical Chemistry 88: 8657-8663.CrossRefGoogle ScholarPubMed
GALLI, R., PREUSSE, G., UCKERMANN, O., BARTELS, T., KRAUTWALD-JUNGHANNS, M., KOCH, E. and STEINER, G. (2017) In ovo sexing of chicken eggs by fluorescence spectroscopy. Analytical and Bioanalytical Chemistry 409: 1185-1194.CrossRefGoogle ScholarPubMed
GIUNCHI, A., BERARDINELLI, A., RAGNI, L., FABBRI, A. and SILAGHI, F.A. (2008) Non-destructive freshness assessment of shell eggs using FT-NIR spectroscopy. Journal of Food Engineering 89: 142-148.CrossRefGoogle Scholar
GÖHLER, D., FISCHER, B. and MEISSNER, S. (2016) In-ovo sexing of 14-day-old chicken embryos by pattern analysis in hyperspectral images (VIS/NIR spectra): A non-destructive method for layer lines with gender-specific down feather color. Poultry Science 96: 1-4.CrossRefGoogle ScholarPubMed
HAUGH, R.R. (1937) The Haugh unit for measuring egg quality.Google Scholar
HOU, Z.C., YANG, N., LI, J.Y. and XU, G.Y. (2009) Egg quality prediction by using Fourier transform near infrared reflectance spectroscopy (FT-NIR). Spectroscopy and Spectral Analysis 29: 2063-2068.Google Scholar
ISLAM, M.H., KONDO, N., OGAWA, Y., FUJIURA, T., SUZUKI, T. and FUJITANI, S. (2017) Detection of infertile eggs using visible transmission spectroscopy combined with multivariate analysis. Engineering in Agriculture, Environment and Food 10: 115-120.CrossRefGoogle Scholar
ISLAM, M.H., KONDO, N., OGAWA, Y., FUJIURA, T., SUZUKI, T., NAKAJIMA, S. and FUJITANI, S. (2015) Prediction of chick hatching time using visible transmission spectroscopy combined with partial least squares regression. Engineering in Agriculture, Environment and Food 8: 61-66.CrossRefGoogle Scholar
KAROUI, R., NICOLAÏ, B. and DE BAERDEMAEKER, J. (2008) Monitoring the Egg Freshness During Storage Under Modified Atmosphere by Fluorescence Spectroscopy. Food and Bioprocess Technology 1: 346-356.CrossRefGoogle Scholar
KEMPS, B.J., BAMELIS, F.R., MERTENS, K., DECUYPERE, E.M., DE BAERDEMAEKER, J.G. and DE KETELAERE, B. (2010) Assessment of embryonic growth in chicken eggs by means of visible transmission spectroscopy. BiotechnologyPprogress 26: 512-516.Google ScholarPubMed
KEMPS, B.J., BAMELIS, F.R., DE KETELAERE, B., MERTENS, K., TONA, K., DECUYPERE, E.M. and DE BAERDEMAEKER, J.G. (2006) Visible transmission spectroscopy for the assessment of egg freshness. Journal of the Science of Food and Agriculture 86: 1399-1406.CrossRefGoogle Scholar
KEMPS, B.J., DE KETELAERE, B., BAMELIS, F.R., MERTENS, K., DECUYPERE, E.M., DE BAERDEMAEKER, J.G. and SCHWÄGELE, F. (2007) Albumen freshness assessment by combining visible near-infrared transmission and low-resolution proton nuclear magnetic resonance spectroscopy. Poultry Science 86: 752-759.CrossRefGoogle ScholarPubMed
LAWRENCE, K., SMITH, D., WINDHAM, W., HEITSCHMIDT, G., PARK, B. and YOON, S.C. (2007) Egg embryo development detection with hyperspectral imaging. International Journal of Poultry Science 5: 964-969.Google Scholar
LAWRENCE, K.C., YOON, S.C., HEITSCHMIDT, G.W., JONES, D.R. and PARK, B. (2008) Imaging system with modified-pressure chamber for crack detection in shell eggs. Sensing and Instrumentation for Food Quality and Safety 2: 116-122.CrossRefGoogle Scholar
LIN, H., ZHAO, J.W., SUN, L., CHEN, Q.S. and ZHOU, F. (2011) Freshness measurement of eggs using near infrared (NIR) spectroscopy and multivariate data analysis. Innovative Food Science & Emerging Technologies 12: 182-186.CrossRefGoogle Scholar
LIN, H., ZHAO, J.W., SUN, L., BI, X.K. and CAI, J.R (2015) Effective variables selection in eggs freshness graphically oriented local multivariate analysis using NIR spectroscopy. International Conference on Chemical, Material and Food Engineering.CrossRefGoogle Scholar
LIU, L. and NGADI, M.O. (2013) Detecting fertility and early embryo development of chicken eggs using near-infrared hyperspectral imaging. Food and Bioprocess Technology 6: 2503-2513.CrossRefGoogle Scholar
LIU, Y.D., YING, Y.B., OUYANG, A. and LI, Y.B. (2007) Measurement of internal quality in chicken eggs using visible transmittance spectroscopy technology. Food Control 18: 18-22.CrossRefGoogle Scholar
LUNVEN, P., DE ST MARCQ, C.L.C., CARNOVALE, E. and FRATONI, A. (1973) Amino acid composition of hen's egg. British Journal of Nutrition 30: 189-194.CrossRefGoogle ScholarPubMed
NARUSHIN, V.G., VAN KEMPEN, T.A., WINELAND, M.J. and CHRISTENSEN, V.L. (2004) Comparing infrared spectroscopy and egg size measurements for predicting eggshell quality. Biosystems Engineering 87: 367-373.CrossRefGoogle Scholar
SASIC, S. and OZAKI, Y. (2001) Short-wave near-infrared spectroscopy of biological fluids. 1. Quantitative analysis of fat, protein, and lactose in raw milk by partial least-squares regression and band assignment. Analytical Chemistry 73: 64-71.CrossRefGoogle ScholarPubMed
SILVERSIDES, F.G. and SCOTT, T.A. (2001) Effect of storage and layer age on quality of eggs from two lines of hens. Poultry Science 80: 1240-1245.CrossRefGoogle ScholarPubMed
SMITH, D.P., LAWRENCE, K.C. and HEITSCHMIDT, G.W. (2008) Fertility and embryo development of broiler hatching eggs evaluated with a hyperspectral imaging and predictive modeling system. International Journal of Poultry Science 7: 1001-1004.Google Scholar
SMITH, D.P., MAULDIN, J.M., LAWRENCE, K.C., PARK, B. and HEITSCHMIDT, G.W. (2005) Detection of fertility and early development of hatching eggs with hyperspectral imaging. Proceedings of the 11th European Symposium on the Quality of Eggs and Egg Products, Netherlands, pp. 176-180.Google Scholar
SONG, K.T., CHOI, S.H. and OH, H.R. (2000) A comparison of egg quality of pheasant, chukar, quail and guinea fowl. Asian Australasian Journal of Animal Sciences 13: 986-990.CrossRefGoogle Scholar
SUGINO, H., NITODA, T. and JUNEJA, L.R. (1996) General chemical composition of hen eggs, in: YAMAMOTO, T., JUNEJA, L.R., HATTA, H. & KIM, M. (Eds) Hen Eggs, Their Basic and Applied Science, pp. 13-24. (New York, CRC Press).Google Scholar
SUKTANARAK, S. and TEERACHAICHAYUT, S. (2017) Non-destructive quality assessment of hens’ eggs using hyperspectral images. Journal of Food Engineering 215: 97-103.CrossRefGoogle Scholar
TIAN, L. and MA, X.L. (2011) Design and implementation of unfertilized eggs verification system based on computer vision. Journal of Agricultural Mechanization Research 8: 039.Google Scholar
USUI, Y., NAKANO, K. and MIZUTANI, J. (2005) Studies on nondestructive detection of abnormal eggs (part 2) -the detection of blood spots in white-shelled eggs using visible spectroscopy. Journal of Social Agriculture Structure 36: 11-16.Google Scholar
USUI, Y., NAKANO, K. and SAITOU, M. (2006) Studies on nondestructive detection of abnormal eggs (part 3) -the detection of blood spots in brown-shelled eggs using visible spectroscopy. Journal of Social Agriculture Structure 36: 209-214.Google Scholar
WEHLING, R.L., PIERCE, M.M. and FRONING, G.W. (1988) Determination of moisture, fat and protein in spray-dried whole egg by near infrared reflectance spectroscopy. Journal of Food Science 53: 1355-1359.CrossRefGoogle Scholar
XIE, C.Q. and HE, Y. (2016) External characteristic determination of eggs and cracked eggs identification using spectral signature. Scientific Reports 6: 21130.CrossRefGoogle ScholarPubMed
XIONG, H., XU, H.R., ZHOU, W.H., YAO, Y. and CHEN, H.R. (2013) Detection of eggshell quality based on NIR spectra. Transactions of the Chinese Society of Agricultural Engineering: S1.Google Scholar
XIONG, L.R., ZHU, Z.H., WU, L.L. and WANG, S.C. (2011) Detection of crack eggs based on near infrared reflectance spectrum and discriminant analysis. Scientific Research and Essays 6: 6250-6253.Google Scholar
XU, H.R., XU, W.H., CHEN, H.R, YAO, Y. and ZHANG, A.H. (2014) Detection of blood spots in brown eggs based on spectroscopic techniques. Transactions of the Chinese Society for Agricultural Machinery 45: 194-198.Google Scholar
ZHANG, W., PAN, L.Q., TU, S.C., ZHAN, G. and TU, K. (2015) Non-destructive internal quality assessment of eggs using a synthesis of hyperspectral imaging and multivariate analysis. Journal of Food Engineering 157: 41-48.CrossRefGoogle Scholar
ZHAO, Q.N., LV, X.Z., JIA, Y.X., CHEN, Y., XU, G.Y. and QU, L.J. (2018) Rapid determination of the fat, moisture, and protein contents in chicken eggs based on near infrared reflectance spectroscopy. Poultry Science 97: 2239-2245.CrossRefGoogle ScholarPubMed
ZHAO, J.W., LIN, H., CHEN, Q.S., HUANG, X.Y., SUN, Z.B. and ZHOU, F. (2010) Identification of egg's freshness using NIR and support vector data description. Journal of Food Engineering 98: 408-414.CrossRefGoogle Scholar
ZHU, Z.H., WANG, Q.H., WANG, S.C., DAI, M.Y. and MA, M.H. (2012) The detection of hatching eggs prior to incubation by the near infrared spectrum. Spectroscopy and Spectral Analysis 32: 962-965.Google ScholarPubMed
ZHU, Z.H., LIU, T., XIONG, L.Y. and MA, M.H. (2014) Identification of the hatching egg before the incubation based on hyperspectral imaging and GA-BP network. Computer Modelling & New Technologies 18: 388-393.Google Scholar
ZHU, Z.H., XIE, D.J., LI, W.Q., WANG, Q.H. and MA, M.H. (2015) Abnormal eggs detection based on spectroscopy technology and multiple classifier fusion. Transactions of the Chinese Society of Agricultural Engineering 31: 312-318.Google Scholar
ZHU, Z.H., LI, W.Q., WANG, Q.H., TANG, Y., CAO, F.L. and MA, R. (2017) Online discriminant model of blood spot eggs based on spectroscopy. Journal of Food Process Engineering 40: doi.org/10.1111/jfpe.12435.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Potential use of spectroscopic techniques for assessing table eggs and hatching eggs
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Potential use of spectroscopic techniques for assessing table eggs and hatching eggs
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Potential use of spectroscopic techniques for assessing table eggs and hatching eggs
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *