Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-x5mqb Total loading time: 0.555 Render date: 2021-12-03T17:56:33.553Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Harmonically terminated high-power rectifier for wireless power transfer

Published online by Cambridge University Press:  12 April 2016

Aasrith Ganti*
Affiliation:
Philips Healthcare, 3545 47th Avenue, Gainesville, Florida 32608, USA Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA
Jenshan Lin
Affiliation:
Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA
Raul A. Chinga
Affiliation:
Space Systems Loral, Palo Alto, California, USA
Shuhei Yoshida
Affiliation:
Radio Application, Guidance and Electro-Optics Div., Integrated Undersea Warfare Systems Development and Promotion Program, NEC Corporation, Tsukuba, Japan
*
Corresponding author: A. Ganti Email: aasrith.ganti@philips.com

Abstract

The paper presents a simplified analysis of harmonically terminated rectifier circuit and experimental results of a Schottky diode rectifier with even and odd harmonic terminations. The analysis is based on the Fourier series expansion of the voltage and current across the diode circuit. Harmonic terminations similar to the techniques used for power amplifiers are studied. A maximum efficiency of 84% at 30 dBm is obtained with second- and third-order harmonics terminated. The optimum value of dc load to maximize efficiency is obtained by sweeping the load. An optimal operating range of 28–35 dBm is obtained. The applications of the rectifier in wireless charging and power transfer systems are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tesla, N.: Experiments with alternate currents of very high frequency and their application to methods of artificial illumination. Trans. Am. Inst. Electr. Eng., VIII (1) (1891), 266319.CrossRefGoogle Scholar
[2] Brown, W.C.; Eves, E.E.: Beamed microwave power transmission and its application to space. IEEE Trans. Microw. Theory Techn., 40 (6) (1992), 12391250.CrossRefGoogle Scholar
[3] Shinohara, N.; Matsumoto, H.: Experimental study of large rectenna array for microwave energy transmission. IEEE Trans. Microw. Theory Techn., 46 (3) (1998), 261268.CrossRefGoogle Scholar
[4] Shinohara, N.: Power without wires. IEEE Microw. Mag., 12 (7) (2011), S64S73.CrossRefGoogle Scholar
[5]IEEE SA – C95.1-2005 – IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz [Online]. https://standards.ieee.org/findstds/standard/C95.1-2005.html (accessed 22 June 2015).Google Scholar
[6] Raab, F.H.: Class-E, class-C, and class-F power amplifiers based upon a finite number of harmonics. IEEE Trans. Microw. Theory Techn., 49 (8) (2001), 14621468.CrossRefGoogle Scholar
[7] Yoshida, S.; Tanomura, M.; Chen, W.: A 13.56 MHz rectifier with efficiency-improving harmonic-termination circuit for wireless power transmission systems, in 9th European Radar Conf., 2012, 888891.Google Scholar
[8] Fu, M.; Zhang, T.; Zhu, X.; Ma, C.: A 13.56 MHz wireless power transfer system without impedance matching networks, in IEEE Wireless Power Transfer Conf., 2013, 222225.Google Scholar
[9] Liou, C.; Lee, M.; Huang, S.; Mao, S.: High-power and high-efficiency RF Rectifiers using series and parallel power-dividing networks and their applications to wirelessly powered devices. IEEE Trans. Microw. Theory Techn., 61 (1) (2013), 616624.CrossRefGoogle Scholar
[10] Hosain, M.K.; Kouzani, A.Z.: Design and analysis of efficient rectifiers for wireless power harvesting in DBS devices, in Proc. 2013 IEEE Eighth Conf. on Industrial. Electronics and Application ICIEA 2013, 2013, 651655.Google Scholar
[11] Noda, A.; Shinoda, H.: Compact class-F RF-DC converter with antisymmetric dual-diode configuration, in IEEE MTT-S Int. Microwave Symp. Digest, 2012, 810.Google Scholar
[12] Roberg, M.; Reveyrand, T.; Ramos, I.; Falkenstein, E.A.; Popovic, Z.: High-efficiency harmonically terminated diode and transistor rectifiers. IEEE Trans. Microw. Theory Techn., 60 (12) (2012), 40434052.CrossRefGoogle Scholar
[13] Kang, J.H.; Park, H.G.; Jang, J.H.; Lee, K.Y.: A design of wide input range, high efficiency rectifier for mobile wireless charging receiver, in IEEE Wireless Power Transfer Conf. 2014, IEEE WPTC 2014, 2014, 154157.Google Scholar
[14] Guo, J.; Zhang, H.; Zhu, X.: Theoretical analysis of RF-DC conversion efficiency for class-F rectifiers. IEEE Trans. Microw. Theory Techn., 62 (1) (2014), 977985.CrossRefGoogle Scholar
[15] Wang, D.; Negra, R.: Design of a rectifier for 2.45 GHz wireless power transmission, in 2012 8th Conf. on Ph.D. Research in Microelectronics and Electronics (PRIME), 2012, 187190.Google Scholar
[16] Brown, W.C.: The history of power transmission by radio waves. IEEE Trans. Microw. Theory Techn., 32 (9) (1984), 12301242.CrossRefGoogle Scholar
[17] Dickinson, R.M.: Performance of a high-power, 2.388-GHz rectifying array in wireless power transmission over 1.54 km, in IEEE MTT-S Int. Microwave Symp., 1976, 139141.Google Scholar
[18] Fu, M.; Ma, C.; Zhu, X.: A cascaded boost – buck converter for high-efficiency wireless power transfer systems. IEEE Trans. Ind. Inf., 10 (3) (2014), 19721980.CrossRefGoogle Scholar
[19] Grebennikov, A.: Load network design technique for class F and inverse class FPAs. High Freq. Electron., 10 (5) (2011), 5876.Google Scholar
[20] Grebennikov, A.; Sokal, N.O.; Franco, M.J.: Power amplifier design principles, in Switch. RF Microw. Power Amplifiers (2nd Edn.), 2012, 182.Google Scholar
[21] Hemour, S. et al. : Towards low-power high-efficiency RF and microwave energy harvesting. IEEE Trans. Microw. Theory Techn., 62 (4) (2014), 965976.CrossRefGoogle Scholar
[22] Karalis, A.; Joannopoulos, J.D.; Soljačić, M.: Efficient wireless non-radiative mid-range energy transfer. Ann. Phys. (NY), 323 (1) (2008), 3448.CrossRefGoogle Scholar
[23] Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljačić, M.: Wireless power transfer via strongly coupled magnetic resonances. Science, 317 (5834) (2007), 8386.CrossRefGoogle ScholarPubMed
[24] Le, T.; Mayaram, K.; Fiez, T.: Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE J. Solid-State Circuits, 43 (5) (2008), 12871302.CrossRefGoogle Scholar
[25] Low, Z.N.; Chinga, R.A.; Tseng, R.; Lin, J.: Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system. IEEE Trans. Ind. Electron., 56 (5) (2009), 18011812.Google Scholar
[26] Pozar, D.M.: Microwave and RF Design of Wireless Systems, John Wiley & Sons, Inc., 2000.Google Scholar
[27] Raab, F.H.: Class-F power amplifiers with maximally flat waveforms. IEEE Trans. Microw. Theory Techn., 45 (11) (1997), 20072012.CrossRefGoogle Scholar
[28] Reveyrand, T.; Ramos, I.; Popović, Z.: Time-reversal duality of high-efficiency RF power amplifiers. Electron. Lett., 48 (25) (2012), 16071608.CrossRefGoogle Scholar
[29] Sokal, N.O.: Class-E RF power amplifiers. QEX Commun. Quart, 204 (2001), 920.Google Scholar
[30] Suslov, S.K.: Introduction of Basic Fourier Series, Springer, 2003.CrossRefGoogle Scholar
[31] Takahashi, K. et al. : GaN Schottky diodes for microwave power rectification. Jpn. J. Appl. Phys., 48 (4S) (2009), 04C095.CrossRefGoogle Scholar
[32] Tsang, K.S.: Class-F Power Amplifier with Maximized PAE, Cal Poly, San Luis Obispo, 2010.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Harmonically terminated high-power rectifier for wireless power transfer
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Harmonically terminated high-power rectifier for wireless power transfer
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Harmonically terminated high-power rectifier for wireless power transfer
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *