Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T06:58:59.057Z Has data issue: false hasContentIssue false

Weed Management in Peanut (Arachis hypogaea) with Flumioxazin Preemergence

Published online by Cambridge University Press:  12 June 2017

Shawn D. Askew*
Affiliation:
Box 7620, Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
John W. Wilcut
Affiliation:
Box 7620, Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
John R. Cranmer
Affiliation:
Valent USA Corporation, Suite 250-3, 1135 Kildaire Farm Road, Cary, NC 27511
*
Corresponding author's E-mail: saskew@unity.ncsu.edu.

Abstract

Flumioxazin plus metolachlor mixtures preemergence (PRE) were evaluated with or without postemergence (POST) herbicides for weed control and peanut (Arachis hypogaea) response in three North Carolina studies. Metolachlor PRE at 2.24 kg ai/ha controlled goosegrass (Eleusine indica) and yellow nutsedge (Cyperus esculentus) 93 and 80%, respectively, and control was not improved with flumioxazin or norflurazon. Metolachlor plus flumioxazin PRE at 0.07 or 0.11 kg ai/ha controlled common lambsquarters (Chenopodium album); entireleaf (Ipomoea hederacea var. integriuscula), ivyleaf (I. hederacea), and pitted morningglory (I. lacunosa); and prickly sida (Sida spinosa) better than metolachlor plus norflurazon PRE at 1.34 kg ai/ha. Morningglories (Ipomoea spp.) were controlled 77 and 86% with flumioxazin PRE at 0.07 and 0.11 kg/ha, respectively, and control was increased to nearly 100% with acifluorfen plus 2,4-DB or lactofen plus 2,4-DB POST. Peanut injury by flumioxazin and norflurazon was observed at one location in 1997; however, yields were not reduced. Peanut treated with metolachlor plus flumioxazin PRE at either rate yielded at least 3,750 kg/ha compared to 3,120 kg/ha with metolachlor plus norflurazon PRE or 1,320 kg/ha with metolachlor PRE.

Type
Research
Copyright
Copyright © 1999 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, R. J., Norris, A. E., and Hess, F. D. 1994. Synthetic organic chemicals that act through the porphyrin pathway. In Duke, S. O. and Rebeiz, C. A., eds. Porphyric Pesticides: Chemistry, Toxicology, and Pharmaceutical Applications. ACS Symposium Series 559. Washington, DC: American Chemical Society. pp. 1833.CrossRefGoogle Scholar
Anonymous. 1998. Crop Protection Reference. 14th ed. New York: C & P Press. 2304 p.Google Scholar
Barker, M. A., Thompson, L. Jr., and Godley, F. M. 1984. Control of annual morningglories (Ipomoea spp.) in soybeans (Glycine max). Weed Sci. 32:813818.CrossRefGoogle Scholar
Bridges, D. C., Kvien, C. K., Hook, J. E., and Stark, C. R. Jr. 1994. An Analysis of the Use and Benefits of Pesticides in U.S.-Grown Peanuts: III Virginia–North Carolina Production Region. Tifton, GA: National Environmentally Sound Production Agriculture Laboratory. 39 p.Google Scholar
Eastin, E. F., Wilcut, J. W., Richburg, J. S. III, and Hicks, T. V. 1993. V-53482 and Zorial systems for weed control in Georgia peanut. Proc. Am. Peanut Res. Educ. Soc. 25:84.Google Scholar
Grichar, W. J. and Colburn, A. E. 1996. Flumioxazin for weed control in Texas peanuts (Arachis hypogaea L.). Peanut Sci. 23:3036.CrossRefGoogle Scholar
Hatzios, K. K., ed. 1998. Herbicide Handbook Supplement to the 7th ed. Champaign, IL: Weed Science Society of America. 104 p.Google Scholar
Higgins, J. M., Whitwell, T., Murdock, E. C., and Toler, J. E. 1988. Recovery of pitted morningglory (Ipomoea lacunosa) and ivyleaf morningglory (Ipomoea hederacea) following applications of acifluorfen, fomesafen, and lactofen. Weed Sci. 36:345353.CrossRefGoogle Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.Google Scholar
Wilcut, J. W. 1991. Economic yield response of peanut (Arachis hypogaea) to postemergence herbicides. Weed Technol. 5:416420.Google Scholar
Wilcut, J. W. 1997. Summary of flumioxazin performance in southeastern peanuts. Proc. South. Weed Sci. Soc. 50:7.Google Scholar
Wilcut, J. W., Swann, C. W., and Hagwood, H. B. 1990. Lactofen systems for broadleaf weed control in peanuts (Arachis hypogaea). Weed Technol. 4:819823.Google Scholar
Wilcut, J. W., York, A. C., and Wehtje, G. R. 1994. The control and interaction of weeds in peanut (Arachis hypogaea). Rev. Weed Sci. 6:177205.Google Scholar
Wilcut, J. W., York, A. C., and Jordan, D. L. 1995. Weed management systems for oil seed crops. In Smith, A. E., ed. Handbook of Weed Management Systems. New York: Marcel-Dekker. pp. 343400.Google Scholar
Yoshida, R., Sakaki, M., Sato, R., Haga, T., Nagano, E., Oshio, H., and Kamoshita, K. 1991. S-53482—a new N-phenyl phthalimide herbicide. Proc. Brighton Crop Prot. Conf., Weeds 1:6975.Google Scholar