Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T10:14:01.841Z Has data issue: false hasContentIssue false

Respray Requests on Custom-Applied, Glyphosate-Resistant Soybeans in Illinois: How Many and Why

Published online by Cambridge University Press:  20 January 2017

Brian J. Schutte*
Affiliation:
United States Department of Agriculture–Agricultural Research Service, Global Change and Photosynthesis Research Unit, 1102 South Goodwin Avenue, Urbana, IL 61801
Aaron G. Hager
Affiliation:
Department of Crop Sciences, University of Illinois, 1102 South Goodwin Avenue, Urbana, IL 61801
Adam S. Davis
Affiliation:
United States Department of Agriculture–Agricultural Research Service, Global Change and Photosynthesis Research Unit, 1102 South Goodwin Avenue, Urbana, IL 61801
*
Corresponding author's E-mail: brian.schutte@ars.usda.gov.

Abstract

If an herbicide application fails to control a targeted weed community sufficiently, farmers may try to eliminate surviving weeds with a follow-up application (hereafter “respray”). Despite the implications of resprays on the spread of herbicide-resistant weeds, respray frequencies and causal factors are poorly understood. A two-part survey of glyphosate-resistant soybean fields and custom application services was conducted in Illinois during 2005 and 2006 to determine the relative frequency of respray requests for postemergence glyphosate, and to identify weed community factors associated with glyphosate respray requests. A meta-analysis was then utilized to project the impacts of weed community factors driving respray requests on crop yield. Glyphosate resprays were requested for 14% of surveyed fields in both 2005 (n = 43) and 2006 (n = 90). In 2005, respray requests were highly associated with both population densities of weed communities visible from roadsides and incidences of skips (i.e., rectangular areas of escaped weeds indicating custom application failure). A skip increased the odds of respray request by more than ninefold, and population densities of weed communities visible from roadsides were, on average, 2.5 times greater in respray-requested fields compared with nonrequested fields. In 2006, respray requests were associated with population densities of weed communities identified by walking through fields. Contrary to 2005, requests in 2006 were concentrated in those fields with low weed population densities. Prior to resprays, weed communities capable of causing substantial soybean yield loss were present in both respray-requested and nonrequested fields in 2005 but in only nonrequested fields in 2006. Although this investigation indicated that custom applicators can take actions to reduce respray requests (i.e., avoiding skips), farmers and custom applicators should be prepared to implement additional weed control after postemergence glyphosate applications because damaging weed communities may remain.

Si la aplicación de un herbicida no funciona para controlar suficientemente una comunidad de malezas específica, los agricultores quizás traten de eliminar las malezas sobrevivientes con una aplicación subsecuente (de ahora en adelante re-aplicación). A pesar de las implicaciones de la re-aplicación en la propagación de malezas resistentes al herbicida, las frecuencias de las aplicaciones y de sus factores causales son poco comprendidos. Una encuesta de dos partes de cultivos resistentes al glifosato y de los servicios de aplicación personalizada fue llevada al cabo en Illinois durante 2005 y 2006 para: (1) Determinar la frecuencia relativa de solicitudes de re-aplicación para el glifosato post-emergente y (2) identificar los factores de las comunidades de malezas asociados con las solicitudes de re-aplicación de glifosato. Después, se utilizó un meta-análisis para proyectar los impactos en el rendimiento del cultivo de los factores de la comunidad de malezas que incentivaran las solicitudes de re-aplicación. Las re-aplicaciones de glifosato se solicitaron para el 14% de los campos encuestados tanto en 2005 (n = 43) como en 2006 (n = 90). En el 2005 las solicitudes de re-aplicación se relacionaron en alto grado tanto con las densidades de población de las comunidades de malezas visibles desde la orilla de los caminos como con existencia de “manchones” (o sea áreas rectangulares de malezas que no fueron alcanzadas por la primera aplicación del herbicida). Uno de estos “manchones” incrementó más de 9 veces las probabilidades de que hubiera una solicitud de re-aplicación y en promedio las densidades de población de las comunidades de malezas visibles desde la orilla de los caminos fueron 2.5 veces mayores en campos donde se solicitó la re-aplicación, comparados con los que no la solicitaron. En 2006, las solicitudes de re-aplicación fueron relacionadas con las densidades de población de las comunidades de malezas que fueron identificadas caminando a través de los campos. Contrario al 2005, las solicitudes en 2006 se concentraron en campos con bajas densidades de población de malezas. Anterior a las re-aplicaciones, se encontraron en 2005 comunidades de malezas capaces de causar una pérdida sustancial en el rendimiento de la soya, tanto en campos que solicitaron la re-aplicación como los que no. Sin embargo, en 2006 dichas comunidades solamente estuvieron presentes en los campos donde no se solicitó. Aunque esta encuesta indicó que los aplicadores de herbicidas pueden tomar acciones para reducir las solicitudes de re-aplicación (o sea, evitando los “manchones”), los agricultores y los aplicadores de herbicidas deben estar preparados para implementar controles adicionales de malezas posteriores a las aplicaciones post-emergentes de glifosato ya que algunas comunidades de malezas dañinas pueden persistir.

Type
Education/Extension
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arce, G. D., Pedersen, P., and Hartzler, R. G. 2009. Soybean seeding rate effects on weed management. Weed Technol. 23:1722.Google Scholar
Bensch, C. N., Horak, M. J., and Peterson, D. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci. 51:3743.Google Scholar
Binns, M. R., Nyrop, J. P., and van der Werf, W. 2000. Sampling and Monitoring in Crop Protection. New York, NY: CABI. 284 p.Google Scholar
Blackshaw, R. E., Anderson, G. W., and Dekker, J. 1987. Interference of Sinapis arvensis L. and Chenopodium album L. in spring rapeseed (Brassica napus L.). Weed Res. 27:207213.Google Scholar
Burnham, K. P. and Anderson, D. R. 2002. Model Selection and Inference: A Practical Information-Theoretic Approach. 2nd ed. New York, NY: Springer Verlag. 496 p.Google Scholar
Coble, H. D. and Mortensen, D. A. 1992. The threshold concept and its application to weed science. Weed Technol. 6:191195.Google Scholar
Cousens, R. 1987. Theory and reality of weed control thresholds. Plant Prot. Q. 2:1320.Google Scholar
Czapar, G. F., Curry, M. P., and Gray, M. E. 1995. Survey of integrated pest management practices in central Illinois. J. Prod. Agric. 8:483486.Google Scholar
Czapar, G. F., Curry, M. P., and Wax, L. M. 1997. Grower acceptance of economic thresholds for weed management in Illinois. Weed Technol. 11:828831.Google Scholar
Davis, V. M., Gibson, K. D., Mock, V. A., and Johnson, W. G. 2009. In-field and soil-related factors that affect the presence and prediction of glyphosate-resistant horseweed (Conyza canadensis) populations collected from Indiana soybean fields. Weed Sci. 57:281289.Google Scholar
Dekker, J. and Meggitt, W. F. 1983. Interference between velvetleaf (Abutilon theophrasti Medic.) and soybean (Glycine max (L.) Merr.). 2. Population dynamics. Weed Res. 23:103107.CrossRefGoogle Scholar
Dieleman, J. A., Mortensen, D. A., and Martin, A. R. 1999. Influence of velvetleaf (Abutilon theophrasti) and common sunflower (Helianthus annuus) density variation on weed management outcomes. Weed Sci. 47:8189.Google Scholar
Gibson, K. D., Johnson, W. G., and Hillger, D. E. 2005. Farmer perceptions of problematic corn and soybean weeds in Indiana. Weed Technol. 19:10651070.Google Scholar
Gibson, K. D., Johnson, W. G., and Hillger, D. E. 2006. Farmer perceptions of weed problems in corn and soybean rotation systems. Weed Technol. 20:751755.Google Scholar
Hammond, C. M., Luschei, E. C., Boerboom, C. M., and Nowak, P. J. 2006. Adoption of integrated pest management tactics by Wisconsin farmers. Weed Technol. 20:756767.Google Scholar
Harder, D. B., Sprague, C. L., and Renner, K. A. 2007. Effect of soybean row width and population on weeds, crop yield, and economic return. Weed Technol. 21:744752.Google Scholar
Harper, J. L. 1977. Population Biology of Plants. New York, NY: Academic Press. 892 p.Google Scholar
Harrison, S. K. 1990. Interference and seed production by common lambsquarters (Chenopodium album) in soybeans (Glycine max). Weed Sci. 38:113118.Google Scholar
Harrison, S. K., Williams, C. S., and Wax, L. M. 1985. Interference and control of giant foxtail (Setaria faberi) in soybeans (Glycine max). Weed Sci. 33:203208.Google Scholar
Heap, I. 2009. The International Survey of Herbicide Resistant Weeds. www.weedscience.com. Accessed: May 25, 2010.Google Scholar
Holloway, J. C. and Shaw, D. R. 1996. Effect of herbicides on ivyleaf morningglory (Ipomoea hederacea) interference in soybean (Glycine max). Weed Sci. 44:860864.Google Scholar
Hosmer, D. W. and Lemeshow, S. 2000. Applied Logistic Regression. 2nd ed. New York, NY: Wiley. 375 p.Google Scholar
Johnson, W. G. and Gibson, K. D. 2006. Glyphosate-resistant weeds and resistance management strategies: An Indiana grower perspective. Weed Technol. 20:768772.Google Scholar
Johnson, W. G., Owen, M. D. K., Kruger, G. R., Young, B. G., Shaw, D. R., Wilson, R. G., Wilcut, J. W., Jordan, D. L., and Weller, S. C. 2009. U.S. farmer awareness of glyphosate-resistant weeds and resistance management strategies. Weed Technol. 23:308312.Google Scholar
Knezevic, S. Z., Darta, A., Scott, J., Klein, R. N., and Golus, J. 2009. Problem weed control in glyphosate-resistant soybean with glyphosate tank mixes and soil-applied herbicides. Weed Technol. 23:507512.Google Scholar
Kruger, G. R., Johnson, W. G., Weller, S. C., Owen, M. D. K., Shaw, D. R., Wilcut, J. W., Jordan, D. L., Wilson, R. G., Bernards, M. L., and Young, B. G. 2009. U.S. grower views on problematic weeds and changes in weed pressure in glyphosate-resistant corn, cotton, and soybean cropping systems. Weed Technol. 23:162166.Google Scholar
Luschei, E. C., Hammond, C. M., Boerboom, C. M., and Nowak, P. J. 2009. Convenience sample of on-farm research cooperators representative of Wisconsin farmers. Weed Technol. 23:300307.CrossRefGoogle Scholar
Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. 1996. Applied Linear Statistical Models. Chicago, IL: Irwin. 1408 p.Google Scholar
Neve, P. 2008. Simulation modelling to understand the evolution and management of glyphosate resistance in weeds. Pest Manag. Sci. 64:392401.Google Scholar
[NOAA-NCDC] National Oceanic and Atmospheric Administration—National Climate Data Center 2009. Annual Climatological Summaries. http://www.ncdc.noaa.gov/oa/climate/stationlocator.html. Accessed: May 25, 2010.Google Scholar
Schmenk, R. and Kells, J. J. 1998. Effects of soil-applied atrazine and pendimethalin on velvetleaf (Abutilon theophrasti) competiveness in corn. Weed Technol. 12:4752.CrossRefGoogle Scholar
Stoller, E. W., Harrison, S. K., Wax, L. M., Regnier, E. E., and Nafziger, E. D. 1987. Weed interference in soybeans (Glycine max). Rev. Weed Sci. 3:155181.Google Scholar
Taylor, K. L. and Hartzler, R. G. 2000. Effect of seed bank augmentation on herbicide efficacy. Weed Technol. 14:261267.Google Scholar
Toler, J. E., Guice, J. B., and Murdock, E. C. 1996. Interference between johnsongrass (Sorghum halepense), smooth pigweed (Amaranthus hybridus), and soybean (Glycine max). Weed Sci. 44:331338.Google Scholar
Thompson, R. and Thompson, S. 1990. The on-farm research program of Practical Farmers of Iowa. Am. J. Altern. Agr. 5:163167.Google Scholar
[USDA-NASS] U.S. Department of Agriculture–National Agricultural Statistics Service 2009. Illinois Farm Report, November 12, 2009, IFR-09-15. http://www.nass.usda.gov/Statistics_by_State/Illinois/Publications/Farm_Reports/2009/ifr0915.pdf. Accessed: May 25, 2010.Google Scholar
[USDA-NCIPMC] U.S. Department of Agriculture–North Central Integrated Pest Management Center 2000. Crop Profile for Soybean in Illinois. http://www.ipmcenters.org/cropprofiles/docs/ILsoybeans.pdf. Accessed: May 25, 2010.Google Scholar
Webster, T. M., Loux, M. M., Regnier, E. E., and Harrison, S. K. 1994. Giant ragweed (Ambrosia trifida) canopy architecture and interference studies in soybean (Glycine max). Weed Technol. 8:559564.Google Scholar
Westhoven, A. M., Stachler, J. M., Loux, M. M., and Johnson, W. G. 2008. Management of glyphosate tolerant common lambsquarters (Chenopodium album) in glyphosate-resistant soybean. Weed Technol. 22:628634.Google Scholar
Wilson, R. S., Hooker, N., Tucker, M., LeJeune, J., and Doohan, D. 2009. Targeting the farmer decision making process: a pathway to increased adoption of integrated weed management. Crop Prot. 28:756764.Google Scholar
Wilson, R. S., Tucker, M. A., Hooker, N. H., LeJeune, J. T., and Doohan, D. 2008. Perceptions and beliefs about weed management: perspectives of Ohio grain and produce farmers. Weed Technol. 22:339350.Google Scholar
Wuest, S. B., McCool, D. K., Miller, B. C., and Veseth, R. J. 1999. Development of more effective conservation farming systems through participatory on-farm research. Am. J. Altern. Agr. 14:98102.Google Scholar