Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-06T02:42:20.757Z Has data issue: false hasContentIssue false

Palmer Amaranth (Amaranthus palmeri) Control in Soybean with Glyphosate and Conventional Herbicide Systems

Published online by Cambridge University Press:  20 January 2017

Jared R. Whitaker*
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
Alan C. York
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
David L. Jordan
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
A. Stanley Culpepper
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794
*
Corresponding author's E-mail: jared@uga.edu.

Abstract

Glyphosate typically controls Palmer amaranth very well. However, glyphosate-resistant (GR) biotypes of this weed are present in several southern states, requiring the development of effective alternatives to glyphosate-only management strategies. Field experiments were conducted in seven North Carolina environments to evaluate control of glyphosate-susceptible (GS) and GR Palmer amaranth in narrow-row soybean by glyphosate and conventional herbicide systems. Conventional systems included either pendimethalin or S-metolachlor applied PRE alone or mixed with flumioxazin, fomesafen, or metribuzin plus chlorimuron followed by fomesafen or no herbicide POST. S-metolachlor was more effective at controlling GR and GS Palmer amaranth than pendimethalin; flumioxazin and fomesafen were generally more effective than metribuzin plus chlorimuron. Fomesafen applied POST following PRE herbicides increased Palmer amaranth control and soybean yield compared with PRE-only herbicide systems. Glyphosate alone applied once POST controlled GS Palmer amaranth 97% late in the season. Glyphosate was more effective than fomesafen plus clethodim applied POST. Control of GS Palmer amaranth when treated with pendimethalin or S-metolachlor plus flumioxazin, fomesafen, or metribuzin plus chlorimuron applied PRE followed by fomesafen POST was equivalent to control achieved by glyphosate applied once POST. In fields with GR Palmer amaranth, greater than 80% late-season control was obtained only with systems of pendimethalin or S-metolachlor plus flumioxazin, fomesafen, or metribuzin plus chlorimuron applied PRE followed by fomesafen POST. Systems of pendimethalin or S-metolachlor plus flumioxazin, fomesafen, or metribuzin plus chlorimuron applied PRE without fomesafen POST controlled GR Palmer amaranth less than 30% late in the season. Systems of pendimethalin or S-metolachlor PRE followed by fomesafen POST controlled GR Palmer amaranth less than 60% late in the season.

El glifosato típicamente controla el Amaranthus palmeri, muy bien. Sin embargo, biotipos de esta maleza resistente al glifosato (GR) están presentes en varios estados del sur, por lo que se requiere el desarrollo de alternativas efectivas al uso exclusivo del glifosato en las estrategias de manejo. Se llevaron al cabo experimentos de campo en siete entornos ambientales en Carolina del Norte para evaluar el control de Amaranthus palmeri susceptible al glifosato (GS) y resistente al mismo, en el cultivo de soya sembrado en surcos angostos tratado con glifosato y sistemas convencionales de herbicidas. Los sistemas convencionales incluyeron ya sea pendimetalina o S-metolaclor aplicados PRE solos o mezclados con flumioxazin, fomesafen o metribuzin más clorimuron, seguidos por fomesafen o sin herbicida POST. El S-metolaclor fue más efectivo para controlar Amaranthus palmeri GR y GS que la pendimetalina; el flumioxazin y el fomesafen generalmente fueron más efectivos que el metribuzin más clorimuron. El fomesafen aplicado POST después de la aplicación de herbicidas PRE, incrementó el control de Amaranthus palmeri y el rendimiento de la soya comparado con los sistemas de únicamente herbicidas PRE. El glifosato aplicado una sola vez POST, controló el Amaranthus palmeri GS en un 97% ya entrada la estación. El glifosato fue más efectivo que el fomesafen más cletodim aplicados POST. El control de Amaranthus palmeri GS, tratado con pendimetalina o S-metolaclor más flumioxazin, fomesafen, o metribuzin más clorimuron aplicado PRE seguido de fomesafen POST, fue equivalente al control obtenido con glifosato aplicado POST en una sola ocasión. En parcelas con Amaranthus palmeri GR, se obtuvo un control mayor del 80% entrada la estación únicamente con sistemas de pendimetalina o S-metolaclor más flumioxazin, fomesafen, o metribuzin más clorimuron aplicados PRE seguidos por fomesafen POST. Sistemas de pendimetalina o S-metolaclor más flumioxazin, fomesafen, o metribuzin más clorimuron aplicados PRE sin fomesafen POST, controlaron Amaranthus palmeri GR en menos del 30%, ya entrada la estación. Sistemas de pendimentalina o S-metolaclor PRE seguidos de fomesafen POST, controlaron Amaranthus palmeri GR en menos de 60%, ya entrada la estación.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahrens, W. H., Cox, D. J., and Budhwar, G. 1990. Use of arcsine and square root transformations for subjectively determined percentage data. Weed Sci. 38:452458.CrossRefGoogle Scholar
Anonymous 2009. Valor SX herbicide label. Walnut Creek, CA: Valent U.S.A. Corporation. Available at http://www.cdms.net/LDat/ld3LL035.pdf. Accessed: August 12, 2010.Google Scholar
Ateh, C. M. and Harvey, R. G. 1999. Annual weed control in glyphosate-resistant soybean (Glycine max). Weed Technol. 13:394398.CrossRefGoogle Scholar
Bensch, C. N., Horak, M. J., and Peterson, D. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci. 51:3743.CrossRefGoogle Scholar
Corbett, J. L., Askew, S. D., Thomas, W. E., and Wilcut, J. W. 2004. Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate. Weed Technol. 18:443453.CrossRefGoogle Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54:620626.CrossRefGoogle Scholar
Culpepper, A. S., Whitaker, J. R., MacRae, A. W., and York, A. C. 2008. Distribution of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Georgia and North Carolina during 2005 and 2006. J. Cotton Sci. 12:306310.Google Scholar
Culpepper, A. S. and York, A. C. 1998. Weed management in glyphosate-tolerant cotton. J. Cotton Sci. 2:174185.Google Scholar
Culpepper, A. S. and York, A. C. 1999. Weed management and net returns with transgenic, herbicide-resistant, and nontransgenic cotton (Gossypium hirsutum). Weed Technol. 13:411420.CrossRefGoogle Scholar
Culpepper, A. S., York, A. C., Batts, R. B., and Jennings, K. M. 2000. Weed management in glufosinate- and glyphosate-resistant soybean. Weed Technol. 14:7788.CrossRefGoogle Scholar
Dill, G. M., CaJacob, C. A., and Padgette, S. R. 2008. Glyphosate-resistant crops: adoption, use and future considerations. Pest Manag. Sci. 64:326331.CrossRefGoogle ScholarPubMed
Dunnet, C. W. 1955. A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 50:10961121.CrossRefGoogle Scholar
Ehleringer, J. 1983. Ecophysiology of Amaranthus palmeri, a Sonoran Desert summer annual. Oecologia 57:107112.CrossRefGoogle Scholar
Frans, R. E., Talbert, R., Marx, D., and Crowley, H. 1986. Experimental design and techniques for measuring and analyzing plant responses to weed control practices. Pages 2946. In Camper, N. D. ed. Research Methods in Weed Science. Champaign, IL: Southern Weed Science Society.Google Scholar
Gianessi, L. 2005. Economic and herbicide use impacts of glyphosate-resistant crops. Pest Manag. Sci. 61:241245.CrossRefGoogle ScholarPubMed
Gossett, B. J. and Toler, J. E. 1999. Differential control of Palmer amaranth (Amaranthus palmeri) and smooth pigweed (Amaranthus hybridus) by postemergence herbicides in soybean. Weed Technol. 13:165168.CrossRefGoogle Scholar
Griffith, G. M., Norsworthy, J. K., Scott, R. C., Smith, K. L., and Oliver, L. R. 2007. Palmer amaranth (Amaranthus palmeri) resistance to glyphosate in an Arkansas population. Proc. South. Weed Sci. Soc. 60:82.Google Scholar
Heap, I. 2009. The International Survey of Resistant Weeds. Available at http://www.weedscience.org. Accessed: September 25, 2009.Google Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci. 48:347355.CrossRefGoogle Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) resistant to imazethapyr and thifensulfuron. Weed Technol. 9:192195.CrossRefGoogle Scholar
Jha, P., Norsworthy, J. K., Riley, M. B., Bielenberg, D. G., and Bridges, W. Jr. 2008. Acclimation of Palmer amaranth (Amaranthus palmeri) to shading. Weed Sci. 56:729734.CrossRefGoogle Scholar
Keeley, P. E., Carter, C. H., and Thullen, R. J. 1987. Influence on planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci. 35:199204.CrossRefGoogle Scholar
Klingaman, T. E. and Oliver, L. R. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci. 42:523527.CrossRefGoogle Scholar
Main, C. L. and Jones, M. A. 2007. Glyphosate resistant Palmer amaranth in South Carolina. Pages. 566. in. Proceedings of the Beltwide Cotton Conferences. Memphis, TN National Cotton Council of America.Google Scholar
Massinga, R. A., Currie, R. S., Horak, M. J., and Boyer, J. 2001. Interference of Palmer amaranth in corn. Weed Sci. 49:202208.CrossRefGoogle Scholar
Mayo, C. M., Horak, M. J., Peterson, D. E., and Boyer, J. E. 1995. Differential control of four Amaranthus species by six postemergence herbicides in soybean (Glycine max). Weed Technol. 9:141147.CrossRefGoogle Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.CrossRefGoogle Scholar
Mehlich, A. 1984. Photometric determination of humic matter in soils, a proposed method. Commun. Soil Sci. Plant Anal. 15:14171422.CrossRefGoogle Scholar
Monks, D. M. and Oliver, L. R. 1988. Interactions between soybean (Glycine max) cultivars and selected weeds. Weed Sci. 36:770774.CrossRefGoogle Scholar
Morgan, G. D., Baumann, P. A., and Chandler, J. M. 2001. Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol. 15:408412.CrossRefGoogle Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol. 22:108113.CrossRefGoogle Scholar
Parker, R. G., York, A. C., and Jordan, D. L. 2005. Comparison of glyphosate products in glyphosate-resistant cotton (Gossypium hirsutum) and corn (Zea mays). Weed Technol. 19:796802.CrossRefGoogle Scholar
Place, G., Bowman, D., Burton, M., and Rufty, T. 2008. Root penetration through a high bulk density soil layer: differential response of a crop and weed species. Plant Soil 307:179190.CrossRefGoogle Scholar
Roberts, R. K., Pendergrass, R., and Hayes, R. M. 1999. Economic analysis of alternative herbicide regimes on Roundup Ready soybeans. J. Prod. Agric. 12:449454.CrossRefGoogle Scholar
Sellers, B. A., Smeda, R. J., Johnson, W. G., Kendig, J. A., and Ellersieck, M. R. 2003. Comparative growth of six Amaranthus species in Missouri. Weed Sci. 51:329333.CrossRefGoogle Scholar
Sosnoskie, L. M., Kichler, J. M., Wallace, R., and Culpepper, A. S. 2009. Multiple resistance to glyphosate and an ALS inhibitor in Palmer amaranth in Georgia. Pages. 13511352. in. Proceedings of the Beltwide Cotton Conferences. Memphis, TN National Cotton Council.Google Scholar
Sprague, C. L., Stoller, E. W., Wax, L. M., and Horak, M. J. 1997. Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) resistance to selected ALS-inhibiting herbicides. Weed Sci. 45:192197.CrossRefGoogle Scholar
Steckel, L. E., Main, C. L., Ellis, A. T., and Mueller, T. C. 2008. Palmer amaranth (Amaranthus palmeri) in Tennessee has low level glyphosate resistance. Weed Technol. 22:119123.CrossRefGoogle Scholar
Thomas, W. E., Burke, I. C., and Wilcut, J. W. 2004. Weed management in glyphosate-resistant corn with glyphosate, halosulfuron, and mesotrione. Weed Technol. 18:826834.CrossRefGoogle Scholar
Webster, T. M. 2005. Weed survey—southern states: broadleaf crops subsection. Proc. South. Weed Sci. Soc. 58:291304.Google Scholar
Whitaker, J. R. 2009. Distribution, biology, and management of glyphosate-resistant Palmer amaranth. Raleigh, NC: North Carolina State University. 231 p.Google Scholar
Wise, A. M., Grey, T. L., Prostko, E. P., and Vencill, W. K. 2007. ALS resistant Amaranthus palmeri in Georgia: distribution, dose response and heritability. Page. 71. in. Proceedings of the Southern Weed Science Society. Champaign, IL: Southern Weed Science Society.Google Scholar
Wright, S. R., Jennette, M. W., Coble, H. D., and Rufty, T. W. 1999. Root morphology of young Glycine max, Senna obtusifolia, and Amaranthus palmeri . Weed Sci. 47:706711.CrossRefGoogle Scholar
Young, B. G. 2006. Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol. 20:301307.CrossRefGoogle Scholar
York, A. C. and Culpepper, A. S. 2009. Practicing herbicide resistance management. Page. 337. in. Proceedings of the Southern Weed Science Society. Orlando, FL: Southern Weed Science Society.Google Scholar
York, A. C., Whitaker, J. R., Culpepper, A. S., and Main, C. L. 2007. Glyphosate-resistant Palmer amaranth in the southeastern United States. Page. 225. in. Proceedings of the Southern Weed Science Society. Champaign, IL: Southern Weed Science Society.Google Scholar