Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T07:34:34.100Z Has data issue: false hasContentIssue false

Identification of Triazine-Resistant Vulpia bromoides

Published online by Cambridge University Press:  20 January 2017

Michael B. Ashworth*
Affiliation:
Australian Herbicide Resistance Initiative, School of Plant Biology, The University of Western Australia, Perth, Western Australia 6009, Australia Department of Agriculture and Environment, School of Science, Curtin University, Perth, Western Australia, 6845, Australia
Heping Han
Affiliation:
Australian Herbicide Resistance Initiative, School of Plant Biology, The University of Western Australia, Perth, Western Australia 6009, Australia
Garren Knell
Affiliation:
Consult-Ag, P.O. Box 398, Narrogin, Western Australia, 6312, Australia
Stephen B. Powles
Affiliation:
Australian Herbicide Resistance Initiative, School of Plant Biology, The University of Western Australia, Perth, Western Australia 6009, Australia
*
Corresponding author's E-mail: m.ashworth@curtin.edu.au.

Abstract

In Australia, triazine herbicides have routinely controlled the Vulpia species (Vulpia bromoides, Vulpia myuros, and Vulpia fasciculata; collectively referred to as silvergrass). However, a simazine-resistant silvergrass biotype, collected from Pingelly in the Western Australian grain belt in 2014, has been confirmed. Compared to the pooled mortality of three simazine-susceptible silvergrass populations (S1, S2, and S3), the simazine-resistant Pingelly population was > 594-fold resistant at the LD50 level. Dose-response screening of the simazine-selected progeny (> 800 g ai simazine ha−1) demonstrated that the simazine resistance mechanism was heritable. Sequencing of the chloroplast psbA gene revealed the resistant population is homozygous for a serine 264 to glycine mutation, which confers a high-level triazine resistance. As expected this Ser-264-Gly mutation conferred resistance to atrazine and metribuzin, but not the phenyl-urea diuron. This is the first published report confirming field-evolved triazine resistance in a Vulpia population.

En Australia, los herbicidas triazine han controlado rutinariamente especies del género Vulpia (Vulpia bromoides, Vulpia myuros, y Vulpia fasciculata; colectivamente referidas como silvergrass). Sin embargo se ha confirmado un biotipo de silvergrass resistente a simazine, el cual fue colectado en Pingelly, en la faja de granos del Oeste de Australia, en 2014. Al compararse con la mortalidad promediada de tres poblaciones de silvergrass susceptibles a simazine (S1, S2, y S3), la población Pingelly resistente a simazine fue > 594 veces más resistente según el nivel de LD50. Una evaluación de respuesta a dosis de la progenie seleccionada con simazine (> 800 g ai simazine ha−1) demostró que el mecanismo de resistencia a simazine fue heredable. La secuenciación del gen psbA del cloroplasto reveló que la población resistente es homocigota para la mutación serine 263 a glycine, la cual confiere un alto nivel de resistencia a triazine. Como se esperaba, esta mutación Ser-264-Gly confirió resistencia a atrazine y metribuzin, pero no a diuron, un herbicida phenyl-urea. Este es el primer reporte publicado confirmando la resistencia a triazine evolucionada en campo en una población de Vulpia.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Daniel Stephenson, Louisiana State University Agricultural Center.

References

Literature Cited

Allden, W (1959) The summer nutrition of weaner sheep: the relative roles of available energy and protein when fed as supplements to sheep grazing mature pasture herbage. Aust J Agric Res 10:219236 Google Scholar
Arntzen, CJ, Pfister, K, Steinback, KE (1982) The mechanism of chloroplast triazine resistance: alterations in the site of herbicide action. Pages 185214 in LeBaron, HM, Gressel, J, eds. Herbicide Resistance in Plants. New York: Wiley Google Scholar
Bolland, M (1985) Effect of soil acidity and nutrient deficiencies on the growth and persistence of subterranean clover in pastures grown on sandy soils near Esperance, Western Australia. Aust J Exp Agric 25:893901 Google Scholar
Borger, CPD, Michael, PJ, Mandel, R, Hashem, A, Bowran, D, Renton, M (2012) Linking field and farmer surveys to determine the most important changes to weed incidence. Weed Res 52:564574 Google Scholar
Bowran, D, Wallace, A (1996) Chemical weed management of Vulpia . Plant Prot Q 11:211212 Google Scholar
Burnet, M, Hildebrand, O, Holtum, J, Powles, S (1991) Amitrole, triazine, substituted urea, and metribuzin resistance in a biotype of rigid ryegrass (Lolium rigidum L.). Weed Sci 39:317323 Google Scholar
Chapman, DF, McCaskill, MR, Quigley, PE, Thompson, AN, Graham, JF, Borg, D, Lamb, J, Kearney, G, Saul, GR, Clark, SG (2003) Effects of grazing method and fertiliser inputs on the productivity and sustainability of phalaris-based pastures in Western Victoria. Aust J Exp Agric 43:785798 Google Scholar
Chauhan, BS, Gill, G, Preston, C (2006) Seedling recruitment pattern and depth of recruitment of 10 weed species in minimum tillage and no-till seeding systems. Weed Sci 54:658668 Google Scholar
Chodová, D, Salava, J (2004) The evolution and present state of weed resistance to herbicides in the Czech Republic. Herbologia 5:1121 Google Scholar
Dillon, S, Forcella, F (1984) Germination, emergence, vegetative growth and flowering of two silvergrasses, Vulpia bromoides (L.) S.F. Gray and V. myuros (L.) C.C. Gmel. Aust J Bot 32:165175 Google Scholar
Dowling, PM, Wong, PT (1993) Influence of preseason weed management and in-crop treatments on two successive wheat crops. 1. Weed seedling numbers and wheat grain yield. Aust J Exp Agric 33:167172 Google Scholar
Espeland, EK, Perkins, LB, Leger, EA (2010) Comparison of seed bank estimation techniques using six weed species in two soil types. Rangeland Ecol Manag 63:243247 Google Scholar
Friesen, LJS, Powles, SB (2007) Physiological and molecular characterization of atrazine resistance in a wild radish (Raphanus raphanistrum) population. Weed Technol 21:910914 Google Scholar
Gronwald, JW (1994) Resistance to photosystem II inhibiting herbicides. Pages 2760 in Powles, SB, Holtum, JAM, eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL/Ann Arbor, MI/London/Tokyo: Lewis Google Scholar
Hashem, A, Dhammu, HS, Powles, SB, Bowran, DG, Piper, TJ, Cheam, AH (2001) Triazine resistance in a biotype of wild radish (Raphanus raphanistrum) in Australia. Weed Technol 15:636641 Google Scholar
Heap, I (2015) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed June 29, 2015Google Scholar
Hirschberg, J, McIntosh, L (1983) Molecular basis of herbicide resistance in Amaranthus hybridus . Science 222:13461349 Google Scholar
Lagator, M, Vogwill, T, Mead, A, Colegrave, N, Neve, P (2013) Herbicide mixtures at high doses slow the evolution of resistance in experimentally evolving populations of Chlamydomonas reinhardtii . New Phytol 198:938945 Google Scholar
Lemerle, D, Yuan, TH, Murray, GM, Morris, S (1996) Survey of weeds and diseases in cereal crops in the southern wheat belt of New South Wales. Aust J Exp Agric 36:545554 Google Scholar
Leys, R, Plater, B, Cullis, B (1988) Response of six temperate annual weeds to six selective herbicides. Plant Prot Q 3:163168 Google Scholar
McNally, S, Bettini, P, Sevignac, M, Darmency, H, Gasquez, J, Dron, H (1987) A rapid method to test for chloroplast DNA involvement in atrazine resistance. Plant Physiol 83:248250 Google Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60:3162 Google Scholar
Onofri, A, Carbonell, EA, Piepho, HP, Mortimer, AM, Cousens, RD (2010) Current statistical issues in weed research. Weed Res 50:524 Google Scholar
Pan, G, Si, P, Yu, Q, Tu, J, Powles, S (2012) Non-target site mechanism of metribuzin tolerance in induced tolerant mutants of narrow-leafed lupin (Lupinus angustifolius L.). Crop Pasture Sci 63:452458 Google Scholar
Powles, S, Yu, Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317347 Google Scholar
Price, WJ, Shafii, B, Seefeldt, SS (2012) Estimation of dose-response models for discrete and continuous data in weed science. Weed Technol 26:587601 Google Scholar
Ryan, GF (1970) Resistance to common groundsel to simazine and atrazine. Weed Sci 18:614616 Google Scholar
Schönfeld, M, Yaacoby, T, Michael, O, Rubin, B (1987) Triazine resistance without reduced vigor in Phalaris paradoxa . Plant Physiol 83:329333 Google Scholar
Streibig, JC, Rudemo, M, Jensen, JE (1993) Dose-response curves and statistical models. Pages 2955 in Kudsk, P, Streibig, JC, eds. Herbicide Bioassays. Boca Raton, FL: CRC Google Scholar
Velthuis, RG, Amor, RL (1983) Weed survey of cereal crops in south-west Victoria. Aust Weeds 2:5052 Google Scholar
Wallace, A (1988) Vulpia bromoides (L.) S.F. Grey and V. myuros (L.) C.C. Gmelin. Pages 291308 in Pannetta, FD, Groves, RH, Shepherd, RCH, eds. The Biology of Australian Weeds: Volume 3. Frankston, Victoria, Australia: R.G. and F.J. Richardson Google Scholar
Waller, RA, Sale, PWG, Saul, GR, Kearney, GA (2001) Tactical versus continuous stocking in perennial ryegrass–subterranean clover pastures grazed by sheep in south-western Victoria. 2. Ryegrass persistence and botanical composition. Aust J Exp Agric 41:11091120 Google Scholar
Walsh, M, Newman, P, Powles, S (2013) Targeting weed seeds in-crop: a new weed control paradigm for global agriculture. Weed Technol 27:431436 Google Scholar
Walsh, MJ, Powles, SB, Beard, BR, Porter, SA (2004) Multiple-herbicide resistance across four modes of action in wild radish (Raphanus raphanistrum). Weed Sci 52:813 Google Scholar
Yu, Q, Friesen, S, Zhang, X, Powles, S (2004) Tolerance to acetolactate synthase and acetyl-coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferred by two co-existing resistance mechanisms. Pest Biochem Physiol 78:2130 Google Scholar
Yu, Q, Han, H, Powles, SB (2008) Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Manag Sci 64:12291236 Google Scholar